Air Emission Inventory – Te Awamutu, Turangi and Ngaruawahia 2006

Prepared by: Emily Wilton Environet Ltd

June 2006

For: Environment Waikato PO Box 4010 HAMILTON EAST

ISSN: 1172-4005

Document #: 1090373

Date August 2006

Approved for release by: Viv Smith

Peer reviewed by: Jeff Smith

Initials

Initials

Date August 2006

Table of Contents

Abstract

1		Introduction	1
2		Inventory Design	1
	2.1	Selection of sources	2
	2.2	Selection of contaminants	2
	2.3	Selection of areas	2
	2.4	Temporal distribution	2
3		Domestic heating	3
	3.1	Methodology	3
	3.2	Home heating methods	5
	3.2.1 3.2.2		5 5
	3.2.2	•	6
4		Emissions from domestic heating	7
	4.1	Te Awamutu	7
	4.2	Turangi	12
	4.3	Ngaruawahia	17
5		Motor vehicles	22
	5.1	Motor vehicle emissions	24
	5.2	Te Awamutu	24
	5.3	Turangi	24
	5.4	Ngaruawahia	24
6		Industrial and Commercial	25
	6.1	Methodology	25
	6.2	Industrial and commercial emissions	26
	6.2.1 6.2.2		26 26
	6.2.3	•	27
7		Outdoor burning	28
	7.1	Methodology	28
	7.2	Emissions from outdoor burning	28
	7.3	Te Awamutu	28
	7.4	Turangi	29
	7.5	Ngaruawahia	30
	7.6	Other sources of emissions	30
8		Total Emissions	31
	8.1	Te Awamutu	31
	8.2	Turangi	35
	8.3	Ngaruawahia	39
R	eferenc	es	43
A	ppendix	Cone: Home Heating Questionnaire	44
A	ppendix	B: Emission factors for domestic heating.	47

v

List of Figures

Figure 4-1:	Relative contribution of different heating methods to average daily PM_{10}	8
Figure 4-2:	(July) from domestic heating in Te Awamutu Monthly variations in appliance use in Te Awamutu	0 8
Figure 4-3:	Average number of days per week appliances are used in Te Awamutu per	0
U	month	9
Figure 4-4:	Proportion of annual PM ₁₀ emissions from domestic heating in Te Awamutu by month of year	12
Figure 4-5:	Relative contribution of different heating methods to average daily PM ₁₀ (July) from domestic heating in Turangi	13
Figure 4-6:	Monthly variations in appliance use in Turangi	14
	Average number of days per week appliances are used in Turangi per month	14
	Proportion of annual PM ₁₀ emissions from domestic heating in Turangi by	
0	month of year	17
Figure 4-9:	Relative contribution of different heating methods to average daily PM ₁₀	
-	(July) from domestic heating in Ngaruawahia	18
Figure 4-10	: Monthly variations in appliance use in Ngaruawahia	19
Figure 4-11:	Average number of days per week appliances are used in Ngaruawahia per month	19
Figure 4-12:	Proportion of annual PM_{10} emissions from domestic heating in Ngaruawahia by month of year	22
Figure 6-1	Monthly variations in PM ₁₀ emissions from industry in Te Awamutu	27
0	Relative contribution of sources to daily winter PM ₁₀ emissions in Te	
0	Awamutu	31
Figure 8-2:	Relative contribution of sources to winter time contaminant emissions in Te Awamutu	31
Figure 8-3:	Relative contribution of sources to daily winter PM ₁₀ emissions in Turangi	35
	Relative contribution of sources to contaminant emissions in Turangi	35
	: Relative contribution of sources to daily winter PM ₁₀ emissions in	
-	Ngaruawahia	39
Figure 8-6:	Relative contribution of sources to contaminant emissions in Ngaruawahia	39

List of Tables

Home heating survey area and sample details	3
Emission factors for domestic heating methods	4
Home heating methods and fuels in Te Awamutu	5
Home heating methods and fuels in Turangi	6 7
Home heating methods and fuels in Ngaruawahia	7
Te Awamutu worst-case winter daily domestic heating emissions by appliance type	10
	-
	11
Monthly variations in contaminant emissions from domestic heating in Te	
Awamutu	12
Turangi worst-case winter daily domestic heating emissions by appliance	
type	15
Turangi average winter daily domestic heating emissions by appliance type	16
Monthly variations in contaminant emissions from domestic heating in	
Turangi	17
Ngaruawahia worst-case winter daily domestic heating emissions by	
	20
	21
,	
•	22
	23
•	23
Emission factors for Te Awamutu, Turangi and Ngaruawahia based on a suburban driving regime and free flow conditions	24
	Emission factors for domestic heating methods Home heating methods and fuels in Te Awamutu Home heating methods and fuels in Turangi Home heating methods and fuels in Ngaruawahia Te Awamutu worst-case winter daily domestic heating emissions by appliance type Te Awamutu average winter daily domestic heating emissions by appliance type Monthly variations in contaminant emissions from domestic heating in Te Awamutu Turangi worst-case winter daily domestic heating emissions by appliance type Turangi average winter daily domestic heating emissions by appliance type Monthly variations in contaminant emissions from domestic heating in Turangi average winter daily domestic heating emissions by appliance type Monthly variations in contaminant emissions from domestic heating in Turangi Ngaruawahia worst-case winter daily domestic heating emissions by appliance type Ngaruawahia average winter daily domestic heating emissions by appliance type Monthly variations in contaminant emissions from domestic heating in Ngaruawahia average winter daily domestic heating emissions by appliance type Monthly variations in contaminant emissions from domestic heating in Ngaruawahia Ratios of daily VKT to households for urban areas in New Zealand Daily VKT estimates Emission factors for Te Awamutu, Turangi and Ngaruawahia based on a

Table 5-4:	Summary of daily motor vehicle emissions in Te Awamutu, Turangi and	
	Ngaruawahia	25
Table 6-1:	Emission factors for industrial discharges	26
Table 6-2:	Summary of Te Awamutu, Turangi and Ngaruawahia winter time industrial/	
	commercial emissions	27
Table 7-1:	Outdoor burning emission factors (USEPA AP42, 2001)	28
Table 7-2:	Seasonal variations in outdoor burning emissions in Te Awamutu	29
Table 7-3:	Seasonal variations in outdoor burning emissions in Turangi	29
Table 7-4:	Seasonal variations in outdoor burning emissions in Ngaruawahia	30
Table 8-1:	Total daily wintertime emissions by time of day for Te Awamutu	33
Table 8-2:	Monthly variations in daily PM ₁₀ emissions in Te Awamutu	34
Table 8-3:	Total daily wintertime emissions by time of day for Turangi	37
Table 8-4:	Monthly variations in daily PM ₁₀ emissions in Turangi	38
Table 8-5:	Total daily wintertime emissions by time of day for Ngaruawahia	41
Table 8-6:	Monthly variations in daily PM ₁₀ emissions in Ngaruawahia	42

Abstract

Air quality monitoring and other air quality investigations are required to better characterise the extent of NES compliance within the Region. Air quality monitoring in the Waikato Region has been carried out in Hamilton, Tokoroa, Taupo, Te Kuiti and Matamata. Concentrations of PM_{10} in excess of National Environment Standards (NES) have been observed in all of these towns excluding Matamata. Emission inventory studies, which estimate the quantity of PM_{10} and other contaminants discharged into air and the relative contribution of different sources, have been carried out in these areas.

This report outlines the results of an air emission inventory carried out in the areas of Te Awamutu, Turangi and Ngaruawahia. Contaminants included were: particles (PM_{10} and $PM_{2.5}$), carbon monoxide, nitrogen oxides, sulphur oxides, volatile organic compounds and carbon dioxide. This report primarily focuses on emissions of particles (PM_{10}), as the only contaminant in breach of the NES in the Waikato Region. Sources included in the inventory were: domestic heating, motor vehicles, industrial and commercial activities, and outdoor rubbish burning.

A survey of household heating methods and the frequency of outdoor rubbish burning was carried out for each of the areas. Results showed that wood burners were the main method of heating used in all areas and were used by 27%, 64% and 41% of households in Te Awamutu, Turangi and Ngaruawahia respectively. Other common heating methods included electricity and gas. Many households used more than one method to heat the main living area of their home.

The main source of PM_{10} emissions in all three areas during the winter was domestic home heating, which accounted for 59%, 89% and 85% of total emissions in Te Awamutu, Turangi and Ngaruawahia respectively. The other significant contributor to PM_{10} emissions in Te Awamutu were outdoor burning (23%) and industry (15%). The industrial contribution to contaminant concentrations is likely to be much less than the contribution to emissions because industrial discharge is via high stacks that promote more effective dispersion of contaminants. Outdoor rubbish burning contributed 7% in Turangi and 12% in Ngaruawahia. Industrial emissions in both these areas were negligible.

1 Introduction

Air quality monitoring in the Waikato Region has been carried out in Hamilton, Tokoroa, Taupo, Te Kuiti and Matamata. Concentrations of PM_{10} in excess of National Environment Standards (NES) have been observed in all of these towns excluding Matamata. The NES specifies that air quality monitoring be carried out in all airsheds where PM_{10} concentrations are likely to exceed the NES.

In areas where the NES is not met by 2013, Environment Waikato will be unable to grant resource consents for discharges to air. In addition, between September 2005 and 2013 consents for discharges to air can only be granted if Councils can demonstrate a "straight-line path" to compliance that will not be impinged on by the granting of the consent.

Emission inventory studies, which estimate quantity of PM_{10} and other contaminants discharged into air and the relative contribution of different sources, have been carried out in a number of urban areas of the Waikato, including all areas where monitoring has been conducted. In addition to providing a useful tool for evaluating the effectiveness of different management measures in reducing pollution, these studies can assist with prioritising areas for monitoring and the setting of straight-line paths should monitoring indicate non-compliance with the NES.

Other variables involved in setting a straight or curved-line path to compliance include:

- 1. Monitoring data to determine the starting point; that is the extent to which existing concentrations exceed the NES.
- 2. Meteorological data and airshed modelling to determine the relationship between emissions and concentrations.

The latter variable is used to determine the relationship between emissions and concentrations. This modelling indicates the relationship between the reduction required in PM_{10} concentrations relative to the reduction required in emissions. Many areas do not have detailed modelling data illustrating the relationship between 24-hour emissions and concentrations of PM_{10} . One detailed study for Christchurch suggests that the relationship is linear in that a 1% reduction in emissions would result in a 1% reduction in concentrations (Gimson & Fisher, 1997). Thus in the absence of modelling information for other areas, the relationship has often been assumed to be linear.

This report details the results of an air emission inventory carried out for Te Awamutu, Turangi and Ngaruawahia for 2006. The purpose of the inventory is to estimate the amount of PM_{10} discharged into the air in these areas on a worst-case and average winter's night, the relative contribution from different sources and to provide information from which management measures to reduce PM_{10} can be evaluated.

2 Inventory Design

The inventory has been designed with a focus on emissions of PM_{10} , although it does include estimates of emissions of other contaminants. With the exception of Hamilton and monitoring of benzene in Tokoroa, no monitoring of other contaminants has been carried out by Environment Waikato. It is unlikely, based on monitoring carried out in other areas of New Zealand, that concentrations of other contaminants will exceed the NES or air quality guidelines. One exception may be the air quality guideline for benzo(a)pyrene (BaP) as concentrations of this contaminant have been found to be high in areas where PM_{10} concentrations are elevated as a result of emissions from domestic home heating. No NES has been proposed for BaP at this stage.

2.1 Selection of sources

The inventory includes detailed estimates of emissions from domestic heating, outdoor burning, motor vehicles and industry. Emissions from a number of other minor sources are also discussed in the report.

2.2 Selection of contaminants

The inventory included an assessment of emissions of suspended particles (PM_{10}), carbon monoxide (CO), sulphur oxides (SOx), nitrogen oxides (NOx), volatile organic compounds (VOC), carbon dioxide (CO₂) and fine particles ($PM_{2.5}$).

Emissions of PM_{10} , CO, SOx and NOx are included as these contaminants comprise class one air quality indicators as described by MfE (1994) and are included in the NES because of their potential for adverse health impacts. Carbon dioxide is typically included in emission inventory investigations in New Zealand to allow for the assessment of regional greenhouse gas CO_2 emissions. The finer $PM_{2.5}$ size fraction was also included, as this size fraction is also of interest from a health impacts perspective.

Volatile organic compounds are typically included in emission inventory investigations because of their potential contribution to the formation of photochemical pollution. These have been retained in the inventory to allow an assessment of emissions of precursors to ozone should future monitoring indicate concentrations of concern.

2.3 Selection of areas

The study areas were based on census area units with the Te Awamutu area including Te Awamutu West, Te Awamutu Central, Te Awamutu East and Te Awamutu South. Both Turangi and Ngaruawahia were based on the single census area unit areas named accordingly.

2.4 Temporal distribution

Most data were collected based on wintertime daily average emissions. Domestic heating data were collected based on average and worst-case wintertime emissions. For most sources, data were also collected by month of the year to provide an estimate of the relative contributions of different sources to annual average PM_{10} concentrations. No differentiation was made for weekday and weekend emissions, as variances are likely to be minimal for most sources. One exception is outdoor rubbish burning which may occur with greater frequency during the weekend.

Limited time of day breakdowns were obtained for the data. The main focus of the study is on daily PM_{10} emissions during the winter period as this is when concentrations invariably exceeded the ambient air quality guidelines and NES for PM_{10} (24-hour average). In addition, the inclusion of an annual average guideline for PM_{10} in the ambient air quality guidelines (MfE, 2002) increases the importance of including emission estimates for different seasons. The inventory has therefore also been designed for the collection of seasonal data.

Data are presented for four different time of day periods. For domestic heating these are based on time of day distributions from the 2001 Hamilton domestic heating study as it is not possible to collect information on both time of day and seasonal variations in fuel use, owing to issues of survey length. The time of day breakdown is as follows:

- 6am to 10am
- 10am to 4pm
- 4pm to 10 pm
- 10pm to 6am

3 Domestic heating

3.1 Methodology

The activity data for domestic heating was collected using a telephone survey of 245 to 280 households within each study area during the winter of 2006. The survey was carried out by Digipol during late May and early June 2006. The number of households within each study area was based on 2001 census data for occupied dwellings extrapolated for 2006 based on Statistics New Zealand population projections for the districts of Waipa (Te Awamutu), Taupo (Turangi) and Waikato (Ngaruawahia). A copy of the survey questionnaire is shown in Appendix one. Summary data for the survey and study area are shown in Table 3-1.

	Households	Sample size	Area (ha)	Sample error
Te Awamutu	3731	280	731	5.6%
Turangi	1332	245	969	5.6%
Ngaruawahia	1605	256	756	5.6%

 Table 3-1:
 Home heating survey area and sample details

Home heating methods were classified as electricity, open fires, wood burners 10 years or older (pre 1996), wood burners 5-10 years old (1996-2001), wood burners less than 5 years old (post 2001), multi fuel burners, gas burners and oil burners.

Emission factors were applied to the results of the home heating survey to provide an estimate of emissions for the urban areas of Te Awamutu, Turangi and Ngaruawahia. The emission factors used to estimate emissions from domestic heating are shown in Table 3-2. These were reviewed for 2006 to incorporate results from more recent burner testing. As for previous inventories carried out for the Waikato Region, the open fire and multi fuel burner factors were based on the Christchurch 1999 emission factors. The basis for these is detailed in Appendix B. The older wood burner emission rates were based on testing of older wood burners "in situ" in Tokoroa during 2005 as detailed in Wilton and Smith, 2006, with adjustments for wet wood. The gas and oil PM_{10} emission factors have also been revised as a result of more recent testing in New Zealand (Scott, 2004).

Emissions calculated for the worst-case winter's day were based on the assumption that all households that used solid fuel for home heating were using it at the same time. Average winter's day emissions were also calculated. For this estimate, the daily fuel use was adjusted based on the average number of days per week each household used their heating method.

Daily emissions were also calculated for each month of the year to give an indication of the annual profile of PM_{10} emissions. These data were based on the average fuel use allowing for households not using particular heating methods on some nights during the week.

	PM ₁₀ g/kg	CO g/kg	NOx g/kg	SO₂ g/kg	VOC g/kg	CO₂ g/kg	PM _{2.5} g/kg
Open fire - wood	10	100	1.6	0.2	30	1600	10
Open fire - coal	21	80	4	5.0	15	2600	12
Pre 1996 burners	11	110	0.5	0.2	33	1800	11
1996-2001 burners	6.5	65	0.5	0.2	19.5	1800	6.5
Post 2001 burners	6	60	0.5	0.2	18	1800	6
Multi-fuel ¹ - wood	13	130	0.5	0.2	39	1600	13
Multi-fuel ¹ - coal	28	120	1.2	3.0	15	2600	12
Oil	0.3	0.6	2.2	3.8	0.25	3200	0.7
Gas	0.03	0.18	1.3	7.6E-09	0.2	2500	0.6

 Table 3-2:
 Emission factors for domestic heating methods

¹ - includes potbelly, incinerator, coal range and any enclosed burner that is used to burn coal

One of the assumptions underlying the emissions calculations is the average weight for a log of wood. Average log weights used for inventories in New Zealand have included 1.6 kg, 1.4 kg and more recently 1.9 kg. The latter value is based on a survey of 219 households in Christchurch during 2002 and represents the most comprehensive assessment of average fuel weight. A recent burner emission testing programme carried out in Tokoroa during 2005 gave an average log weight of 1.3 kilograms. The sample size (pieces of wood weighed) for this study was 845. However, these were spread across only 12 households so it is uncertain how representative of the Tokoroa population a fuel weight of 1.3 kilograms per log might be.

There is some potential for fuel size to vary by region although factors such as appliance design should limit these variations. The first three average fuel weight values noted above were derived based on measurements carried out in Christchurch. In addition, Environment Canterbury carried out some survey work of the size of chopped wood at five wood suppliers in Christchurch. A total of 132 logs were weighed and gave an average fuel weight of 2.3 kilograms per log (Scott, 2006, pers. comm.). The extent to which this represents wood weight used by households in Christchurch is uncertain, as further chopping of wood by the householder is possible.

Because of the uncertainty surrounding the applicability of fuel weights derived for Christchurch to Te Awamutu, Turangi and Ngaruawahia and the lower sized wood from the more local Tokoroa study (albeit a smaller household sample size) a fuel weight of 1.6 kilograms per log was used for this study.

Emissions for each contaminant and for each time period and season were calculated based on the following equation:

Equation 3.1 **CE (g/day) = EF (g/kg) * FB (kg/day)** Where:

CE = contaminant emission

EF = emission factor

FB = fuel burnt

The main assumptions underlying the emissions calculations are as follows:

- The average weight of a log of wood is 1.6 kg.
- The average weight of a bucket of coal is 9 kg.

3.2 Home heating methods

3.2.1 Te Awamutu

Electricity was the main heating method in Te Awamutu for 2006 with 48% of households using this method to heat their main living area. Gas was the second most common method (33%) followed by wood burners (27%). Table 3-3 shows that households rely on more than one method of heating their main living area during the winter months.

Wood burning is the most common fuel for households using solid fuel heating methods in Te Awamutu with 36% of households using this fuel. About 26 tonnes of wood is burnt on an average winter's night. In comparison coal is used by around 2% of Te Awamutu households and less than half a tonne is burnt per night.

Only a small proportion of Te Awamutu residents use open fires (4%) or multi fuel burners (5%) to heat their main living area.

	Heating	methods	Fuel	Use
	%	НН	t/day	%
Electricity	48%	1,799		
Total Gas	33%	1,239	1	2%
Flued gas	19%	698		
Unflued gas	15%	541		
Oil	1%	27	-	0%
Open fire	4%	133	-	0%
Open fire - wood	4%	133	5	19%
Open fire - coal	1%	27	0.1	1%
Total Wood burner	27%	999	18	67%
Pre 1996 wood burner	11%	406	8	21%
1996-2001 wood burner	9%	328	6	27%
Post 2001 wood burner	7%	265	5	18%
Multi fuel burners	5%	200		
Multi fuel burners-wood	5%	200	3	10%
Multi fuel burners-coal	1%	40	0.3	1%
Pellet burners	0%	-	-	0%
Total wood	36%	1,333	26	96%
Total coal	2%	67	0.4	2%
Total		3,731	27	

Table 3-3: Home heating methods and fuels in Te Awamutu

3.2.2 Turangi

In Turangi, wood burners were the most commonly used home heating method during 2006 with 64% of households using this method to heat their main living area. Electricity and gas were the second most common methods (33% and 25%). Table 3-4 shows that households rely on more than one method of heating their main living area during the winter months.

The most common fuel for households using solid fuel heating methods in Turangi was wood with 76% of households using this fuel. About 19 tonnes of wood is burnt on an average winter's night in Turangi. Coal was used by around 2% of Turangi households with less than 100 kilograms being burnt per night.

Around 6% of Turangi households use open fires and 6% use multi fuel burners to heat their main living area.

	Heating n	nethods	Fuel	Use				
	%	НН	t/day	%				
Electricity	33%	427						
Total Gas	25%	327	0.1	1%				
Flued gas	5%	70						
Unflued gas	20%	257						
Oil	2%	26	0.0	0%				
Oil Open fire Open fire - wood Open fire - coal Total Wood burner	6%	79						
	6%	74	1	8%				
	0%	-	-	0%				
	64%	829	17	84%				
Pre 1996 wood burner	24%	304	6	28%				
1996-2001 wood burner	18%	237	5	29%				
Post 2001 wood burner	22%	287	6	27%				
Multi fuel burners	6%	74						
Multi fuel burners-wood	6%	74	1	6%				
Multi fuel burners-coal	2%	21	0.1	1%				
Pellet burners	0%	5	0.1	0%				
Total wood	76%	976	19	98%				
Total coal	2%	21	0	1%				
Total		1,293	20					

 Table 3-4:
 Home heating methods and fuels in Turangi

3.2.3 Ngaruawahia

Wood burners and gas heaters were the most commonly used home heating methods in Ngaruawahia during 2006 with 41% and 37% of households using these methods respectively. Electricity was the next most common method with 29% of households using electricity in their main living area. Table 3-5 shows that households rely on more than one method of heating their main living area during the winter months.

The most common fuel for households using solid fuel heating methods in Ngaruawahia was wood with 61% of households using this fuel. About 27 tonnes of wood is burnt on an average winter's night in Ngaruawahia. Coal use is more common in Ngaruawahia than in Te Awamutu or Turangi with around 10% of Ngaruawahia households using this fuel and burning around two tonnes per night.

Open fire and multi fuel burner use in Ngaruawahia is higher than Turangi and Te Awamutu with 9% of households using open fires and 12% of households using multi fuel burners to heat their main living area.

	Heating r	nethods	Fuel	Use
	%	НН	t/day	%
Electricity	29%	470		
Total Gas	37%	589	1	2%
Flued gas	10%	162		
Unflued gas	27%	427		
Oil	2%	25	0.0	0%
Open fire	9%	138		
Open fire - wood	8%	125	4	14%
Open fire - coal	3%	44	0	2%
Total Wood burner	41%	658	16	49%
Pre 1996 wood burner	17%	277	7	19%
1996-2001 wood burner	11%	172	4	18%
Post 2001 wood burner	13%	209	5	12%
Multi fuel burners	12%	188		
Multi fuel burners-wood	12%	188	7	27%
Multi fuel burners-coal	7%	113	2	7%
Pellet burners	0%	-	-	0%
Total wood	61%	972	27	90%
Total coal	10%	157	2	8%
Total		1,605	30	

Table 3-5: Home heating methods and fuels in Ngaruawahia

4 Emissions from domestic heating

4.1 Te Awamutu

The greatest amount of PM_{10} from domestic heating during the winter comes from pre 1996 wood burners (33%) and open fires (21%). Multi fuel burners contribute around 16% (Figure 4-1).

Estimates of wintertime contaminant emissions for different heating methods under worst-case and average scenarios are also shown in Table 4-1 and Table 4-2. The emission estimates indicate the following:

- Around 315 kilograms of PM₁₀ are discharged under the worst-case scenario of all households using solid fuel burners on a given night.
- Average daily wintertime PM₁₀ emissions are less at around 245 kilograms per day. This accounts for days when households may not be using specific home heating methods.
- The majority of this PM_{10} is in the finer $PM_{2.5}$ size fraction.
- The majority (95%) of the wintertime domestic PM₁₀ emissions come from the burning of wood with 5% from the burning of coal.

Monthly variations in appliance use and average days per week used are shown in Figure 4-2 and Figure 4-3. Table 4-3 shows seasonal variations in contaminant emissions. The majority of the annual PM_{10} from domestic home heating occurs during the months June, July and August (Figure 4-4).

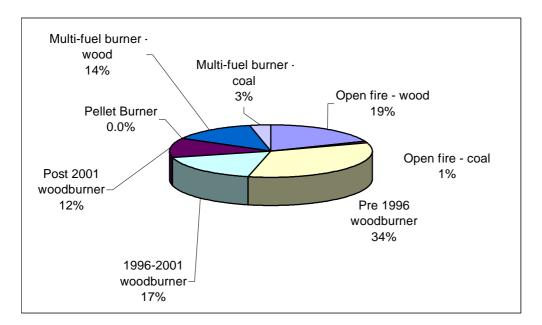


Figure 4-1: Relative contribution of different heating methods to average daily PM_{10} (July) from domestic heating in Te Awamutu

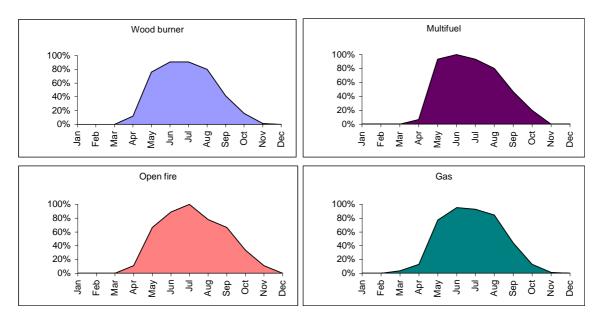


Figure 4-2: Monthly variations in appliance use in Te Awamutu

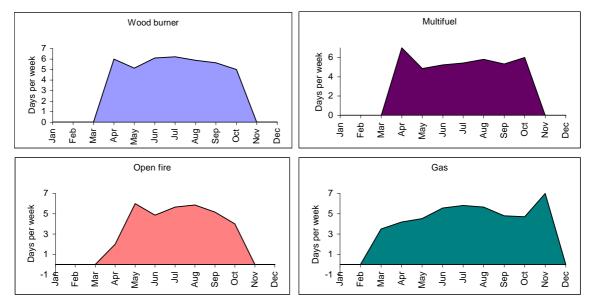


Figure 4-3: Average number of days per week appliances are used in Te Awamutu per month

Fuel Use		Use	PN	/I ₁₀		СО			NOx			S	SO _x		VC	C		С	O ₂			PM _{2.5}	
	t/day	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	t	kg/ha	%	kg	g/ha	%
Open fire																							
Open fire - wood	4.8	14%	48	66	15%	481	658	16%	8	11	32%	1	1	11%	144	197	16%	8	11	14%	48	66	16%
Open fire - coal	0.2	1%	5	7	2%	19	26	1%	1	1	4%	1	2	14%	4	5	0%	1	1	1%	3	4	1%
Wood burner																							
Pre 1996 wood burner	9.3	28%	102	140	32%	1025	1402	33%	5	6	20%	2	3	21%	307	421	34%	15	20	27%	102	140	33%
1996-2001 wood burner	7.5	22%	53	72	17%	527	720	17%	4	5	16%	2	2	17%	158	216	17%	12	16	22%	53	72	17%
Post 2001 wood burner	6.1	18%	37	50	12%	365	500	12%	3	4	13%	1	2	14%	110	150	12%	10	13	18%	37	50	12%
Pellet Burner	0.0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Multi fuel burner																							
Multi fuel burner – wood	4.7	14%	60	83	19%	605	827	20%	2	3	10%	1	1	11%	181	248	20%	7	10	13%	60	83	20%
Multi fuel burner – coal	0.4	1%	10	14	3%	43	59	1%	0	1	2%	1	1	12%	5	7	1%	1	1	2%	6	8	2%
Gas	0.7	2%	0	0	0%	0	0	0%	1	1	4%	0	0	0%	0	0	0%	2	3	3%	0	0	0%
Oil	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Total Wood	32	96%	300	411	95%	3003	4107	98%	21	29	90%	6	9	74%	901	1232	99%	52	71	94%	300	411	97%
Total Coal	1	2%	15	21	5%	62	85	2%	1	2	6%	2	3	26%	9	12	1%	2	2	3%	9	12	3%
Total	34		315	431		3065	4193		24	33		9	12		910	1245		55	76		309	423	

 Table 4-1:
 Te Awamutu worst-case winter daily domestic heating emissions by appliance type

	Fuel	Use	PN	/I ₁₀		СО			NO,	ι.		S	SO _x		VC	DC		C	O ₂			PM _{2.5}	5
	t/day	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	t	kg/ha	%	kg	g/ha	%
Open fire																							
Open fire - wood	4.6	17%	46	63	19%	463	633	19%	7	10	38%	1	1	14%	139	190	20%	7	10	17%	46	63	19%
Open fire - coal	0.1	1%	3	4	1%	11	15	0%	1	1	3%	1	1	10%	2	3	0%	0	0	1%	2	2	1%
Wood burner																							
Pre 1996 wood burner	7.5	28%	83	113	34%	825	1129	35%	4	5	19%	2	2	22%	248	339	35%	12	16	28%	83	113	34%
1996-2001 wood burner	6.1	23%	42	58	17%	424	580	18%	3	4	15%	1	2	18%	127	174	18%	10	13	22%	42	58	18%
Post 2001 wood burner	4.9	18%	29	40	12%	294	403	12%	2	3	13%	1	1	15%	88	121	12%	8	11	18%	29	40	12%
Pellet Burner	0.0	0%	0.0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Multi fuel burner																							
Multi fuel burner – wood	2.6	10%	33	45	14%	332	455	14%	1	2	7%	1	1	8%	100	136	14%	4	6	9%	33	45	14%
Multi fuel burner – coal	0.3	1%	9	12	3%	36	50	2%	0	0	2%	1	1	14%	5	6	1%	1	1	2%	5	7	2%
Gas	0.6	2%	0	0	0%	0	0	0%	1	1	4%	0	0	0%	0	0	0%	1	2	3%	0	0	0%
Oil	0.0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Total Wood	25.7	96%	234	320	95%	2339	3200	98%	18	25	92%	5	7	76%	702	960	99%	41	56	94%	234	320	97%
Total Coal	0.4	2%	11	16	5%	47	65	2%	1	1	5%	2	2	24%	7	9	1%	1	2	3%	6	9	3%
Total	27		245	336		2387	3265		20	27		7	9		708	969		44	60		240	329	

 Table 4-2:
 Te Awamutu average winter daily domestic heating emissions by appliance type

	PM ₁₀	со	NOx	SOx	VOC		PM _{2.5}
	kg/day	kg/day	kg/day	kg/day	kg/day	t/day	kg/day
January	0	0	0	0	0	0	0
February	0	0	0	0	0	0	0
March	0	0	0	0	0	0	0
April	4	44	0	0	13	1	4
Мау	161	1573	12	4	468	29	158
June	230	2244	17	6	667	41	226
July	245	2387	20	7	708	44	240
August	195	1896	15	5	563	35	191
September	74	710	5	2	210	13	72
October	12	109	1	0	32	2	11
November	0	0	0	0	0	0	0
December	0	0	0	0	0	0	0
Total (kg/ year)	28241	274843	2141	783	81603	5044	27686

Table 4-3:Monthly variations in contaminant emissions from domestic
heating in Te Awamutu

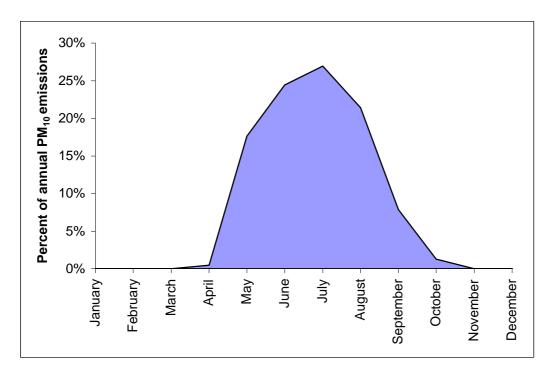


Figure 4-4: Proportion of annual PM_{10} emissions from domestic heating in Te Awamutu by month of year

4.2 Turangi

Older (pre 1996) wood burners produce the greatest amount of PM_{10} from domestic heating during the winter in Turangi contributing around 41% of the daily average wintertime PM_{10} . Overall wood burners contribute 82% of the domestic PM_{10} , with open fires contributing 8% and multi fuel burners 10% (Figure 4-5).

Estimates of wintertime contaminant emissions for different heating methods under worst-case and average scenarios are also shown in Table 4-4 and Table 4-5. The emission estimates indicate the following:

- Around 215 kilograms of domestic PM₁₀ are discharged under the worst-case scenario of all households using solid fuel burners on a given night.
- Average daily wintertime PM₁₀ emissions are less at around 167 kilograms per day. This accounts for days when households may not be using specific home heating methods.
- The majority of this PM₁₀ is in the finer PM_{2.5} size fraction.
- The majority (98%) of the wintertime PM₁₀ emissions come from the burning of wood with 2% from the burning of coal.

Monthly variations in appliance use and average days per week used are shown in Figure 4-6 and Figure 4-7. Table 4-6 shows seasonal variations in contaminant emissions. The majority of the annual PM_{10} from domestic home heating occur during the months June, July and August (Figure 4-8).

Figure 4-5: Relative contribution of different heating methods to average daily PM_{10} (July) from domestic heating in Turangi

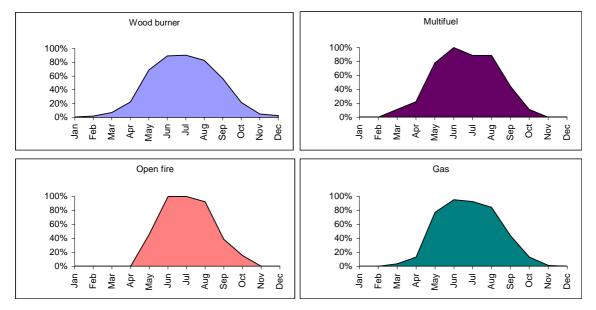


Figure 4-6: Monthly variations in appliance use in Turangi

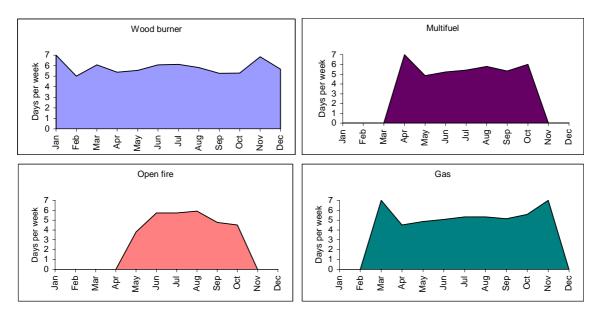
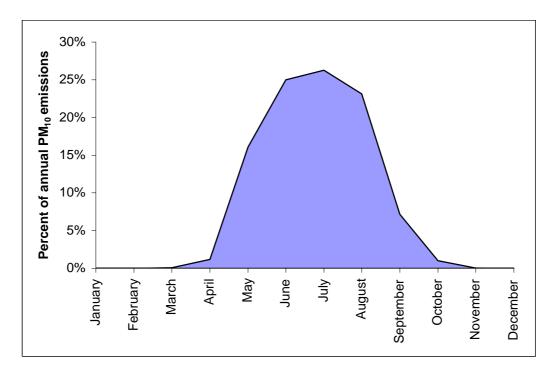


Figure 4-7: Average number of days per week appliances are used in Turangi per month

	Fuel	Fuel Use PM ₁₀			СО			NOx			S	SO _x		VC	C		C	:O ₂			PM _{2.5}	,	
	t/day	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	t	kg/ha	%	kg	g/ha	%
Open fire																							
Open fire - wood	1.5	6%	15	16	7%	152	157	7%	2	3	17%	0	0	5%	46	47	7%	2	3	6%	15	16	7%
Open fire – coal		0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Wood burner																							
Pre 1996 wood burner	7.8	31%	86	89	40%	858	885	41%	4	4	27%	2	2	28%	257	266	41%	12	13	31%	86	89	40%
1996-2001 wood burner	6.1	24%	42	44	20%	425	438	20%	3	3	21%	1	1	22%	127	131	20%	10	10	24%	42	44	20%
Post 2001 wood burner	7.4	30%	44	46	21%	442	456	21%	4	4	25%	1	2	26%	133	137	21%	12	12	29%	44	46	21%
Pellet Burner	0.1	0%	0	0	0%	1	1	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Multi fuel burner																							
Multi fuel burner – wood	1.6	6%	21	22	10%	210	217	10%	1	1	6%	0	0	6%	63	65	10%	3	3	6%	21	22	10%
Multi fuel burner – coal	0.2	1%	7	7	3%	28	29	1%	0	0	2%	1	1	13%	4	4	1%	1	1	2%	4	4	2%
Gas	0.2	1%	0	0	0%	0	0	0%	0	0	2%	0	0	0%	0	0	0%	1	1	1%	0	0	0%
Oil	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Total Wood	24	98%	209	215	97%	2088	2154	99%	14	14	96%	5	5	87%	626	646	99%	39	40	97%	209	215	98%
Total Coal	0	1%	7	7	3%	28	29	1%	0	0	2%	1	1	13%	4	4	1%	1	1	2%	4	4	2%
Total	25		215	222		2116	2184		14	15		6	6		630	650		40	42		213	219	


 Table 4-4:
 Turangi worst-case winter daily domestic heating emissions by appliance type

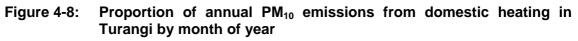

	Fuel	Use	PN	/I ₁₀		со			NO _x			ę	SO _x		VC	OC		C	CO 2			PM _{2.5}	
	t/day	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	t	kg/ha	%	kg	g/ha	%
Open fire																							
Open fire - wood	1.3	7%	13	14	8%	134	138	8%	2	2	19%	0	0	6%	40	41	8%	2	2	7%	13	14	8%
Open fire - coal	0.0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Wood burner																							
Pre 1996 wood burner	6.2	32%	68	70	41%	680	702	41%	3	3	27%	1	1	29%	204	210	41%	10	10	31%	68	70	41%
1996-2001 wood burner	4.8	25%	34	35	20%	336	347	20%	2	2	21%	1	1	23%	101	104	20%	8	8	24%	34	35	20%
Post 2001 wood burner	5.8	30%	35	36	21%	350	361	21%	3	3	25%	1	1	27%	105	108	21%	9	10	30%	35	36	21%
Pellet Burner	0.1	0%	0.1	0	0%	1	1	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Multi fuel burner																							
Multi fuel burner – wood	1.1	6%	14	14	8%	140	145	8%	1	1	5%	0	0	5%	42	43	9%	2	2	5%	14	14	8%
Multi fuel burner – coal	0.1	0%	3	3	2%	11	11	1%	0	0	1%	0	0	6%	1	1	0%	0	0	1%	1	1	1%
Gas	0.1	1%	0	0	0%	0	0	0%	0	0	2%	0	0	0%	0	0	0%	0	0	1%	0	0	0%
Oil	0.0	0%	0	0	0%	0	0	0%	0	0	1%	0	0	3%	0	0	0%	0	0	0%	0	0	0%
Total Wood	19.3	99%	164	169	98%	1641	1694	99%	11	11	97%	4	4	90%	492	508	100%	31	32	98%	164	169	99%
Total Coal	0.1	0%	3	3	2%	11	11	1%	0	0	1%	0	0	6%	1	1	0%	0	0	1%	1	1	1%
Total	20		167	172		1652	1705		11	12		4	4		494	510		32	33		166	171	

 Table 4-5:
 Turangi average winter daily domestic heating emissions by appliance type

	PM ₁₀	СО	NOx	SOx	VOC		PM _{2.5}
	kg/day	kg/day	kg/day	kg/day	kg/day	t/day	kg/day
January	0	0	0	0	0	0	0
February	0	0	0	0	0	0	0
March	0	5	0	0	1	0	0
April	8	77	0	0	23	1	8
Мау	102	1015	6	3	304	20	102
June	164	1622	11	4	485	31	163
July	167	1652	11	4	494	31	166
August	147	1452	10	4	434	27	146
September	47	471	3	1	141	9	47
October	7	65	0	0	20	1	7
November	0	4	0	0	1	0	0
December	0	1	0	0	0	0	0
Total (kg/ year)	19672	195119	1319	489	58325	3741	19552

 Table 4-6:
 Monthly variations in contaminant emissions from domestic heating in Turangi

4.3 Ngaruawahia

The greatest amount of PM_{10} from domestic heating during the winter in Ngaruawahia comes from wood burning on multi fuel burners which contribute around 29% of the daily average wintertime PM_{10} emissions. Older wood burners (23%) and multi fuel burners burning coal (19%) are the next greatest contributors. Overall wood burning contributes 81% of the PM_{10} (Figure 4-9).

Estimates of wintertime contaminant emissions for different heating methods under worst-case and average scenarios are also shown in Table 4-7 and Table 4-8. The emission estimates indicate the following:

- Around 412 kilograms of domestic PM_{10} are discharged under the worst-case scenario of all households using solid fuel burners on a given night.
- Average daily wintertime PM₁₀ emissions are less at around 329 kilograms per day. This accounts for days when households may not be using specific home heating methods.
- The majority of this PM₁₀ is in the finer PM_{2.5} size fraction.
- The majority (81%) of the wintertime PM₁₀ emissions come from the burning of wood with 19% from the burning of coal.

Monthly variations in appliance use and average days per week used are shown in Figure 4-10 and Figure 4-11. Table 4-9 shows seasonal variations in contaminant emissions. The majority of the annual PM_{10} from domestic home heating occur during the months June, July and August (Figure 4-12).

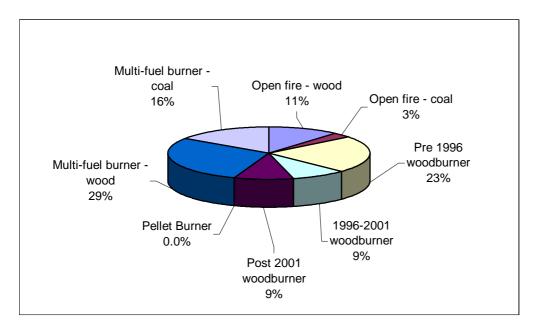


Figure 4-9: Relative contribution of different heating methods to average daily PM₁₀ (July) from domestic heating in Ngaruawahia

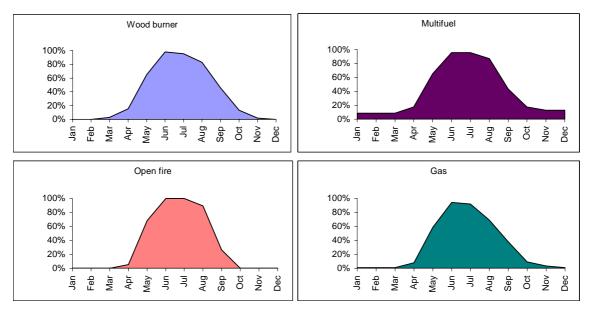


Figure 4-10: Monthly variations in appliance use in Ngaruawahia

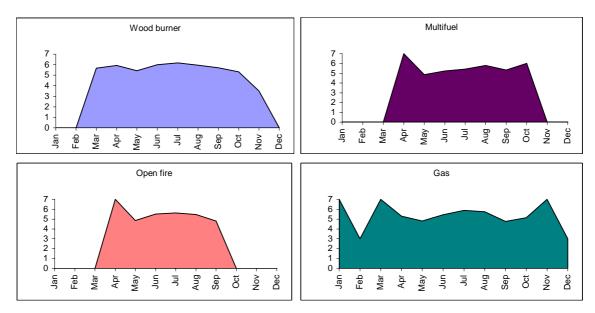
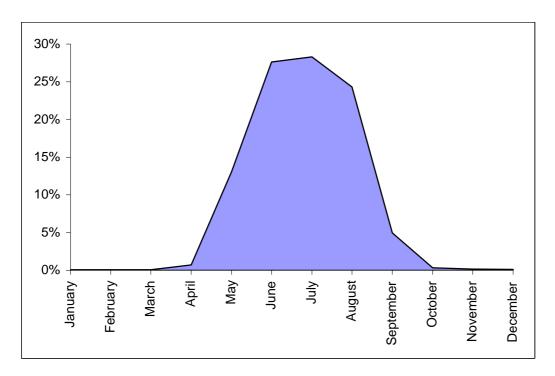


Figure 4-11: Average number of days per week appliances are used in Ngaruawahia per month

	Fuel	Fuel Use PM		N ₁₀		СО			NO _x			S	O _x		VO	C		С	0 ₂			PM _{2.5}	
	t/day	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	t	kg/ha	%	kg	g/ha	%
Open fire																							
Open fire - wood	4.2	11%	42	56	10%	423	559	12%	7	9	24%	1	1	5%	127	168	12%	7	9	11%	42	56	11%
Open fire - coal	0.5	1%	10	14	3%	39	52	1%	2	3	7%	2	3	14%	7	10	1%	1	2	2%	6	8	2%
Wood burner																							
Pre 1996 wood burner	8.1	22%	89	117	22%	887	1173	24%	4	5	15%	2	2	9%	266	352	25%	13	17	20%	89	117	23%
1996-2001 wood burner	5.0	13%	35	46	9%	351	464	10%	3	3	9%	1	1	6%	105	139	10%	8	11	13%	35	46	9%
Post 2001 wood burner	6.1	16%	37	48	9%	366	484	10%	3	4	11%	1	2	7%	110	145	11%	10	13	15%	37	48	10%
Pellet Burner	0.0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Multi fuel burner																							
Multi fuel burner – wood	10.1	27%	131	173	32%	1307	1729	36%	5	7	18%	2	3	12%	392	519	38%	16	21	25%	131	173	35%
Multi fuel burner – coal	2.4	7%	68	90	17%	293	387	8%	3	4	10%	7	10	42%	37	48	4%	6	8	10%	39	51	10%
Gas	0.7	2%	0	0	0%	0	0	0%	1	1	3%	0	0	0%	0	0	0%	2	2	3%	0	0	0%
Oil	0	1%	0	0	0%	0	0	0%	1	1	2%	1	1	5%	0	0	0%	1	1	1%	0	0	0%
Total Wood	33	90%	333	441	81%	3334	4410	91%	21	28	77%	7	9	38%	1000	1323	96%	54	71	84%	333	441	88%
Total Coal	3	8%	79	104	19%	332	439	9%	5	6	17%	10	13	56%	44	58	4%	8	10	12%	45	59	12%
Total	37		412	545		3666	4849		28	37		17	23		1044	1381		64	84		378	500	


 Table 4-7:
 Ngaruawahia worst-case winter daily domestic heating emissions by appliance type

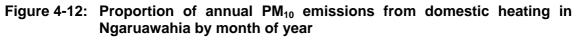

	Fuel	Fuel Use PM ₁₀		СО			NOx			S	<mark>О</mark> х		VC	C		C	CO ₂			PM _{2.5}			
	t/day	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	t	kg/ha	%	kg	g/ha	%
Open fire																							
Open fire - wood	3.8	12%	38	50	11%	376	497	13%	6	8	27%	1	1	6%	113	149	13%	6	8	12%	38	50	12%
Open fire - coal	0.5	2%	10	14	3%	39	52	1%	2	3	9%	2	3	18%	7	10	1%	1	2	3%	6	8	2%
Wood burner																							
Pre 1996 wood burner	6.8	23%	75	99	23%	745	986	25%	3	4	15%	1	2	10%	224	296	27%	11	14	21%	75	99	25%
1996-2001 wood burner	4.2	14%	29	39	9%	295	390	10%	2	3	9%	1	1	6%	88	117	11%	7	9	13%	29	39	10%
Post 2001 wood burner	5.1	17%	31	41	9%	308	407	10%	3	3	11%	1	1	8%	92	122	11%	8	11	16%	31	41	10%
Pellet Burner	0.0	0%	0.0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	0%
Multi fuel burner																							
Multi fuel burner – wood	7.3	24%	95	126	29%	953	1261	32%	4	5	16%	1	2	11%	286	378	34%	12	16	23%	95	126	31%
Multi fuel burner – coal	1.8	6%	51	68	16%	220	291	7%	2	3	9%	5	7	41%	27	36	3%	5	6	9%	29	39	10%
Gas	0.5	2%	0	0	0%	0	0	0%	1	1	3%	0	0	0%	0	0	0%	1	2	2%	0	0	0%
Oil	0.0	0%	0	0	0%	0	0	0%	0	0	0%	0	0	1%	0	0	0%	0	0	0%	0	0	0%
Total Wood	27.2	90%	268	354	81%	2677	3541	91%	18	23	78%	5	7	40%	803	1062	96%	44	58	85%	268	354	88%
Total Coal	2.3	8%	62	82	19%	259	343	9%	4	5	18%	8	11	59%	35	46	4%	6	8	12%	35	46	12%
Total	30		329	436		2936	3884		23	30		14	18		838	1108		51	67		303	401	

 Table 4-8:
 Ngaruawahia average winter daily domestic heating emissions by appliance type

	PM ₁₀	СО	NOx	SOx	VOC	CO ₂	PM _{2.5}
	kg/day	kg/day	kg/day	kg/day	kg/day	t/day	kg/day
January	1	5	0	0	1	0	1
February	1	5	0	0	1	0	1
March	1	5	0	0	1	0	1
April	9	72	0	0	19	1	8
Мау	152	1397	10	6	405	25	143
June	332	2941	22	14	836	51	304
July	329	2936	23	13	838	51	303
August	283	2511	19	12	715	43	259
September	60	503	4	3	139	10	53
October	4	29	0	0	7	1	3
November	2	9	0	0	2	0	1
December	2	8	0	0	1	0	1
Total (kg/ year)	36050	319506	2412	1498	90875	5571	33004

 Table 4-9:
 Monthly variations in contaminant emissions from domestic heating in Ngaruawahia

5 Motor vehicles

Estimates of emissions from motor vehicles in New Zealand typically involve collecting data on vehicle kilometres travelled (VKT) per day under different levels of congestion. Emission factors are then applied to these data to give estimates of emissions for a likely range of congestion conditions.

In the larger urban centres, estimates of VKTs are often made using local road network models. No road network models have been developed for Te Awamutu, Turangi or Ngaruawahia. Estimates of VKTs for this inventory were therefore based on the ratio of VKTs to households for other urban areas of New Zealand (Table 5-1).

Estimates of emissions were made for the lower end of the range (33 VKT per household) and the higher end of the range (68 VKT per household). The likely upper and lower range of VKT estimates for each of the study areas is shown in Table 5-2. Upper limit estimates are likely to be more appropriate for Turangi and Ngaruawahia, as both have State Highway One running through them to increase traffic volumes. The ratio of VKTs to households in Te Awamutu may be more similar to low ratio areas such as Napier and Hastings.

	VKT/ day	No. of households	VKT/HH /day
Nelson	916,007	14340	64
Hamilton	2,463,143	40698	60
Таиро	446,258	6973	64
Kaiapoi	215,509	3188	68
Timaru - excluding Washdyke	348,742	10696	33
Christchurch	4,764,837	100470	47
Napier	878,629	19521	45
Havelock North	142,046	3927	36
Hastings	472,747	10746	44
Flaxmere	88,816	2733	33

 Table 5-1:
 Ratios of daily VKT to households for urban areas in New Zealand

Table 5-2:	Daily VKT estimates
------------	---------------------

	Daily VKT - upper estimate	Daily VKT - lower estimate
Te Awamutu	253708	123123
Turangi	87924	42669
Ngaruawahia	109140	52965

The emission factors used to estimate motor vehicle emissions for PM_{10} , CO, NOx and VOC were taken from the New Zealand Traffic Emission Rates (NZTER) database based on a vehicle fleet profile for the Hamilton 2005 inventory. Further details of the basis for all motor vehicle emission rates are given in Wilton (2005).

Emissions from motor vehicles increase significantly when traffic is congested. Thus different emission rates are used for kilometres travelled when traffic is congested or semi congested. The three different levels of congestion/ driving conditions typically used in emission inventory studies are free flow conditions, interrupted flow conditions and congested flow conditions. A fourth category representing emissions under cold running conditions may also be included. Because of the relative free flowing nature of vehicle movements in Te Awamutu, Turangi and Ngaruawahia all VKTs were treated as free flowing. The emission factors for each contaminant are shown in Table 5-3. These are based on the assumption that 30% of the VKTs occur under cold running conditions.

Table 5-3:Emission factors for Te Awamutu, Turangi and Ngaruawahia based
on a suburban driving regime and free flow conditions

	CO	CO ₂	VOC	NOx	SOx	PM ₁₀	PM _{2.5}
	g/VKT	g/VKT	g/VKT	g/VKT	g/VKT	g/VKT	g/VKT
Free flow conditions	11.2	363	1.8	1.3	0.2	0.07	0.04

Emissions for each time period were calculated by multiplying the appropriate average emission factor by the VKT for that time period and level of service.

Emissions (g) = Emission Rate (g/km) x VKT

Separate estimates of emissions were made for PM_{10} and $\text{PM}_{2.5}$ from brake and tyre wear.

5.1 Motor vehicle emissions

5.2 Te Awamutu

The number of VKTs for Te Awamutu is likely to be around 123,000 per day for 2006, based on the more probable lower limit VKT to households ratio. Based on these data, 11 kilograms per day is likely to be indicative of the amount of PM_{10} from motor vehicles in Te Awamutu. Around 25% of the daily PM_{10} emissions from motor vehicles are estimated to occur as a result of the wearing of brakes and tyres.

Other contaminant emissions from motor vehicles in Te Awamutu include around 1.3 tonnes of CO, 163 kilograms of NOx and 26 kilograms of SOx. In comparison, in Christchurch, where CO concentrations exceed ambient air quality guidelines at least once during most winters, motor vehicles emit around 109 tonnes of CO within the main urban area.

Table 5-4 shows emissions from motor vehicles in Te Awamutu by weight and grams per hectare.

5.3 Turangi

The number of VKTs for Turangi is estimated to be nearer the upper limit estimate of 88,000 per day for 2006. Based on these data, 8 kilograms per day is likely to be indicative of the amount of PM_{10} from motor vehicles in Turangi. Around 25% of the daily PM_{10} emissions from motor vehicles are estimated to occur as a result of the wearing of brakes and tyres.

Other contaminant emissions from motor vehicles in Turangi include around 981 kilograms of CO, 116 kilograms of NOx and 19 kilograms of SOx.

Table 5-4 shows emissions from motor vehicles in Turangi by weight and grams per hectare.

5.4 Ngaruawahia

The number of VKTs for Ngaruawahia is estimated to be nearer the upper limit estimate of 109,000 per day for 2006. Based on these data, 10 kilograms per day is likely to be indicative of the amount of PM_{10} from motor vehicles in Ngaruawahia. Around 25% of the daily PM_{10} emissions from motor vehicles are estimated to occur as a result of the wearing of brakes and tyres.

Other contaminant emissions from motor vehicles in Ngaruawahia include around 1.2 tonnes of CO, 144 kilograms of NOx and 23 kilograms of SOx.

Table 5-4 shows emissions from motor vehicles in Ngaruawahia by weight and grams per hectare.

		PM	10	C	C	N	Эх	SC	Эх
	Hectares	kg	g/ha	kg	g/ha	kg	g/ha	kg	g/ha
Te Awamutu	731	11	15	1374	1880	163	223	26	36
Turangi	969	8	8	981	1013	116	120	19	19
Ngaruawahia	756	10	13	1218	1611	144	191	23	30
		VOC		CC) ₂	PN	1 _{2.5}		
	Hectares	kg		t	kg/ha	kg	g/ha		
Te Awamutu	731	220	301	159	218	6	8		
			100	444	447	4	4		
Turangi	969	157	162	114	117	4	4		

Table 5-4:Summary of daily motor vehicle emissions in Te Awamutu, Turangi
and Ngaruawahia

6 Industrial and Commercial

6.1 Methodology

Industrial discharges to air located within Te Awamutu, Turangi and Ngaruawahia were identified by Environment Waikato staff using a combination of resource consent information and searches of particular activity types such as schools and hospitals. A small number of activities held resource consents for air discharges in Te Awamutu. No resource consents had been issued in Turangi or Ngaruawahia for air discharges that are relevant to this emission inventory. Schools in these areas were identified using lists provided by the Ministry of Education.

The selection of industries for inclusion in the inventory was primarily based on potential for PM_{10} emissions. Industrial activities such as spray painting or dry cleaning operations, which discharge primarily volatile organic compounds (VOC) were not included in the assessment. Activity data from industry includes information such as the quantities of fuel used or in the case of non-combustion activities, materials used or produced. Activities such as open mine quarrying were excluded from the analysis because of uncertainties in emission rates.

Emissions from one consented activity and several non-consented school boilers were included in the assessment for Te Awamutu. Emissions from this activity were estimated by season using steam data provided to Environment Waikato by Kingett Mitchell Ltd (2006). In Turangi and Ngaruawahia the industrial emissions assessment was limited to a small number of school boilers.

For the school boilers, the combustion emissions were estimated using emission factor data as indicated in Equation 6.1.

Equation 6.1 Emissions (kg) = Emission factor (kg/tonne) x Fuel use (tonnes)

Emissions for the consented industry (Fonterra) located in Te Awamutu were estimated based on emissions test data from the site for PM_{10} , NOx and SOx. Emissions of $PM_{2.5}$ were estimated based on the PM_{10} results using USEPA AP-42 size distribution data for a coal fired boiler with baghouse filter. Emissions of CO, VOC and CO₂ were

estimated based on fuel consumption data and emission factors for gas and for a chain grate coal fired boiler as outlined in Table 6-1.

The emission factors used to estimate the quantity of emissions discharged are shown in Table 6-1. The coal fired boiler emission factors for PM_{10} are based on CRL Energy Ltd emission factors. Emission factors for $PM_{2.5}$ are based on the USEPA AP42 database¹ particle size distribution factors, as are emission factors for CO, NOx and SOx. The VOC and CO₂ and all gas emission factors are based on factors derived by NIWA for the Christchurch 1996 emission inventory (NIWA, 1998).

	PM ₁₀ g/kg	PM _{2.5} g/kg	CO g/kg	NOx g/kg	SO₂ g/kg	VOC g/kg	CO₂ g/kg
Coal boiler (underfeed stoker)	3.1	1.9	5.5	4.8	13.5	0.1	2400
Coal boiler - chaingrate	1.8	0.7	3.0	3.8	18.0	0.1	2400
	g/m ³	g/m ³	g/m ³	g/m ³	g/m ³	g/m ³	g/m ³
Natural gas	0.12	0.12	1.34	1.6	0.0096	0.088	1920

 Table 6-1:
 Emission factors for industrial discharges

6.2 Industrial and commercial emissions

6.2.1 Te Awamutu

Around 63 kilograms of PM_{10} per day are estimated to be emitted to air in Te Awamutu from industrial and commercial activities during the winter months (Table 6-2)².

The amount of PM_{10} from industry increases to 306 kilograms per day during the summer months (Figure 6-1). The main sources of these emissions are combustion activities (187 kg per day) from the Fonterra gas co-generation plant and coal-fired boiler and the milk powder drying facilities at the same plant (118 kg per day). While it is uncertain whether PM_{10} from milk powder would result in the same type and extent of health impacts as combustion particulate, all sources are included in the inventory because the NES does not discriminate between different types of particulate. Around 25% of the combustion PM_{10} emissions come from the burning of gas, with the remainder occurring as a result of coal burning.

Industry also contributes over 700 kilograms of NOx and over 500 kilograms of SOx per day during the winter and 3.8 tonnes of NOx and 2.6 tonnes of SOx in Te Awamutu during the summer.

The industrial contribution to ambient contaminant concentrations is likely to be much less than the contribution to emissions because industrial discharge is via high stacks that promote more effective dispersion of contaminants. For example, while industry contributes 15% of winter time PM_{10} emissions at Te Awamutu, the industrial contribution to ambient PM_{10} concentrations will be lower. This is because the industrial stacks are up to 62m high and will disperse PM_{10} emissions farther and wider than emissions from domestic sources.

6.2.2 Turangi

The amount of industrial and commercial emissions to air within Turangi is negligible with estimates of less than one kilogram of PM_{10} per day (Table 6-2). Similarly emissions of other contaminants are estimated to be negligible.

¹ http://www.epa.gov/ttn/chief/ap42/index.html

² Emission estimates based on July values

6.2.3 Ngaruawahia

Around one kilogram of PM_{10} is estimated to be emitted to air from industrial and commercial activities within Ngaruawahia per day (Table 6-2). This arises from the burning of coal in school boilers but is negligible relative to other sources. Emissions of other contaminants from industrial and commercial activities in Ngaruawahia are also estimated to be negligible.

		PM	10	C	C	N	Эх	S	Ох
	Hectares	kg	g/ha	Kg	g/ha	kg	g/ha	kg	g/ha
Te Awamutu	731	63	86	191	261	771	1055	530	725
Turangi	969	0	0	1	1	1	1	3	3
Ngaruawahia	756	1	1	1	1	1	1	4	5
						PM _{2.5}			
		VO	С	CC) ₂	PN	1 _{2.5}		
	Hectares	VO kg	C g/ha	CC Kg	0₂ g/ha	PN kg	l _{2.5} g/ha		
Te Awamutu	Hectares				-				
Te Awamutu Turangi		kg	g/ha	Kg	g/ha	kg	g/ha		

Table 6-2: Summary of Te Awamutu, Turangi and Ngaruawahia winter time industrial/ commercial emissions

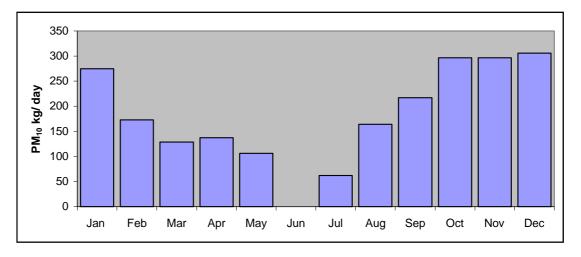


Figure 6-1 Monthly variations in PM₁₀ emissions from industry in Te Awamutu

7 Outdoor burning

The burning of household or garden wastes in a drum, incinerator or in the open air can result in significant emissions to air of key air contaminants, including PM_{10} . Emissions from outdoor burning can contribute to ambient concentrations of these contaminants and cause localised health and nuisance problems. In some urban areas of New Zealand outdoor burning is prohibited because of these impacts. Presently there are no regulations restricting outdoor burning in Te Awamutu, Turangi or Ngaruawahia. Section 17 of the Resource Management Act (1991) or section 29 of the Health Act could be used to control these emissions if individual discharges were causing adverse effects.

7.1 Methodology

Data on the frequency and extent of outdoor rubbish burning in Te Awamutu, Turangi and Ngaruawahia was collected using the household survey described in section 3.1. Survey results showed that outdoor burning was carried out by around 17% of households in Te Awamutu, 6% of households in Turangi and 20% of households in Ngaruawahia.

On average there are around 52 fires per day during the winter in Te Awamutu, 7 per day in Turangi and 25 per day in Ngaruawahia. The proportion of green waste (60%) versus household rubbish burnt (40%) was based on data collected in Otago (ESR, 1999). Emissions were calculated based on the assumption of an average weight of material per burn of 150 kg and using the emission factors in Table 7-1.

	PM _{2.5}	PM ₁₀	СО	NOx	SOx	VOC	CO ₂
	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg
Garden rubbish	8	8	42	3	0.5	4	1470
Household rubbish	17	19	42	3	0.5	4.278	1470
Emission factor	11.7	12.5	42.0	3.0	0.5	4.3	1470

 Table 7-1:
 Outdoor burning emission factors (USEPA AP42, 2001)

7.2 Emissions from outdoor burning

7.3 Te Awamutu

During the winter it is likely that around 97 kilograms of PM_{10} per day is emitted from outdoor burning in Te Awamutu (Table 7-2). Of this, the majority (93%) is within the finer, $PM_{2.5}$ size fraction. Outdoor burning also produces around 325 kg of carbon monoxide and around 11 tonnes of carbon dioxide per day during winter.

It should be noted, however, that there are a number of uncertainties relating to this estimation. In particular it is assumed that burning is carried out evenly throughout the winter, whereas it is likely that a disproportionate amount of burning is carried out during weekend days. Thus on some days no PM_{10} from outdoor burning may occur and on other days it might be many times the amount estimated in this assessment.

Outdoor burning	PM ₁₀	СО	NOx	SOx	VOC		PM _{2.5}
	kg/day	kg/day	kg/day	kg/day	kg/day	t/day	kg/day
January	94	317	23	4	32	11	88
February	94	317	23	4	32	11	88
March	96	324	23	4	33	11	90
April	96	324	23	4	33	11	90
Мау	96	324	23	4	33	11	90
June	97	325	23	4	33	11	91
July	97	325	23	4	33	11	91
August	97	325	23	4	33	11	91
September	100	335	24	4	34	12	93
October	100	335	24	4	34	12	93
November	100	335	24	4	34	12	93
December	94	317	23	4	32	11	88
Total (kg/ year)	35332	118716	8480	1413	12154	4155	33071

 Table 7-2:
 Seasonal variations in outdoor burning emissions in Te Awamutu

7.4 Turangi

In Turangi, outdoor burning is estimated to contribute around 12 kilograms of PM_{10} per day during the winter months (Table 7-3).

As with Te Awamutu, there are a number of uncertainties relating to this estimation. In particular it is assumed that burning is carried out evenly throughout the winter, whereas it is likely that a disproportionate amount of burning is carried out during weekend days. Thus on some days no PM_{10} from outdoor burning may occur and on other days it might be many times the amount estimated in this assessment.

Table 7-3:	Seasonal variations	in outdoor burning	g emissions in Turangi
------------	---------------------	--------------------	------------------------

Outdoor burning	PM ₁₀	CO	NOx	SOx	VOC		PM _{2.5}
	kg/day	kg/day	kg/day	kg/day	kg/day	t/day	kg/day
January	9	29	2	0	3	1	8
February	9	29	2	0	3	1	8
March	10	35	2	0	4	1	10
April	10	35	2	0	4	1	10
Мау	10	35	2	0	4	1	10
June	12	41	3	0	4	1	12
July	12	41	3	0	4	1	12
August	12	41	3	0	4	1	12
September	9	30	2	0	3	1	8
October	9	30	2	0	3	1	8
November	9	30	2	0	3	1	8
December	9	29	2	0	3	1	8
Total (kg/ year)	3648	12256	875	146	1255	429	3414

7.5 Ngaruawahia

Outdoor burning is estimated to contribute around 46 kilograms of PM_{10} per day in Ngaruawahia during the winter months on average (Table 7-4). However, as with Te Awamutu and Turangi, there are a number of uncertainties relating to this estimation. Most noteworthy is the assumption that burning is carried out evenly throughout the winter. In reality it is likely that a disproportionate amount of burning is carried out during weekend days. Thus on some days no PM_{10} from outdoor burning may occur and on other days it might be many times the amount estimated in this assessment.

Outdoor burning	PM ₁₀	СО	NOx	SOx	VOC		PM _{2.5}
	kg/day	kg/day	kg/day	kg/day	kg/day	t/day	kg/day
January	28	93	7	1	9	3	26
February	28	93	7	1	9	3	26
March	33	112	8	1	11	4	31
April	33	112	8	1	11	4	31
Мау	33	112	8	1	11	4	31
June	46	154	11	2	16	5	43
July	46	154	11	2	16	5	43
August	46	154	11	2	16	5	43
September	33	110	8	1	11	4	31
October	33	110	8	1	11	4	31
November	33	110	8	1	11	4	31
December	28	93	7	1	9	3	26
Total (kg/ year)	12763	42883	3063	511	4390	1501	11946

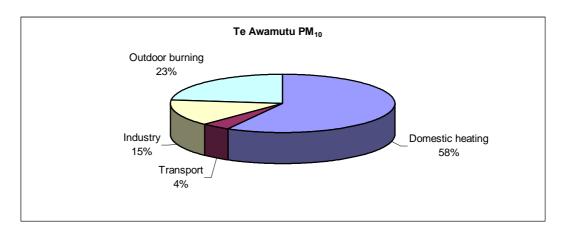
 Table 7-4:
 Seasonal variations in outdoor burning emissions in Ngaruawahia

7.6 Other sources of emissions

This inventory includes all likely major sources of PM_{10} that can be adequately estimated using inventory techniques. Other potentially significant sources of emissions not included in the inventory include dusts (PM_{10}) and sea spray.

Another source not included in the inventory is vegetation, which can emit VOC and NOx. Neither of these latter contaminants is likely to be an air quality concern and vegetation is unlikely to be a significant source in the predominantly urban areas. A natural emissions inventory for the Waikato Region was prepared in 1999 and includes estimates of emissions from vegetative sources (NIWA, 1999).

Lawn mowers, leaf blowers and chainsaws can also contribute small amounts of particulate. These are not typically included in emission inventory studies owing to the relatively small contribution, particularly in areas where solid fuel burning is a common method of home heating. Based on data for other areas, PM_{10} emissions from lawn mowing in all areas are likely to be less than 1 kilogram per day³.


 $^{^3}$ Pacific Air and Environment (1999) indicates around 0.07 grams of $\rm PM_{10}$ are emitted per household per day for the Wellington Region.

8 Total Emissions

8.1 Te Awamutu

Less than half a tonne of PM_{10} is discharged to air in Te Awamutu on an average winter's⁴ day. The proportion of PM_{10} that is from the burning of solid fuel for domestic home heating is less than most areas of the Waikato (59%), which typically show at least 80% from domestic home heating. Outdoor rubbish burning contributes 23% and industry 15%. Motor vehicles are the smallest contributor at around 3% (Figure 8-1). The main source of industrial PM_{10} emissions in Te Awamutu is the burning of gas (25%) and coal (75%) and milk powder emissions from Fonterra.

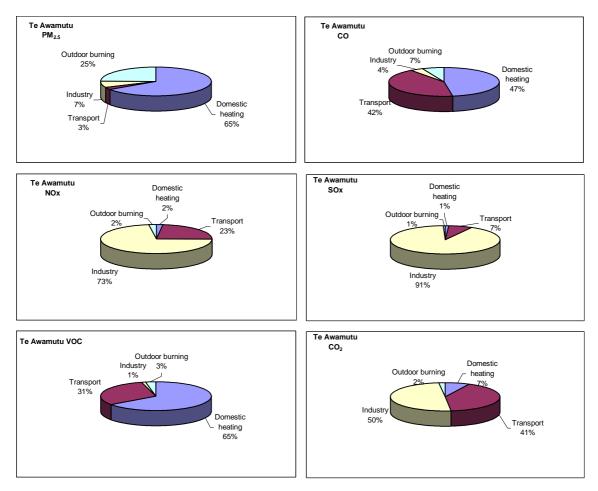

Another point of difference to other areas of the Waikato is the small difference between summertime and winter daily emissions. Because of an increased industrial contribution during the summer months, emissions during the summer are estimated at around 90% of the daily winter time emissions. This compares to around 8% in Turangi, for example.

Figure 8-1: Relative contribution of sources to daily winter PM₁₀ emissions in Te Awamutu

Domestic home heating and motor vehicles are the main sources of CO and industry is the main source of NOx, SOx and CO_2 in Te Awamutu (Figure 8-2).

⁴ Winter emission estimates are based on July values

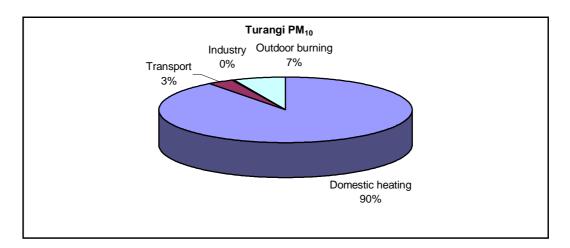
Figure 8-2: Relative contribution of sources to winter time contaminant emissions in Te Awamutu

Because the survey was not designed to collect time of day distributions of fuel use, an assumption has been made that Hamilton daily emission profiles are representative of Te Awamutu contaminant emissions. Based on this assumption being met, the daily variations of emissions for Te Awamutu are estimated in Table 8-1.

Table 8-2 shows seasonal variations in PM_{10} emissions. Although domestic home heating is the dominant source of PM_{10} emissions during the winter months, during the summer, industry and outdoor burning are the dominant contributors to PM_{10} emissions. Note industrial contributions are based on average seasonal rather than monthly fluctuations.

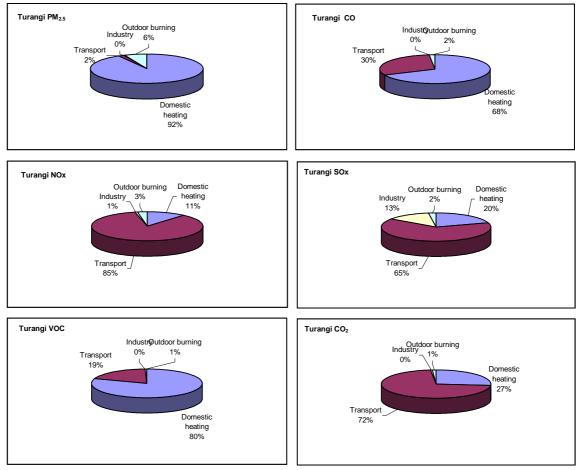
Total emissions (kg)			4pm- 10pm		Total PM₁₀ kg	6am- 10am			10pm -6am	Total PM _{2.5} kg	6am- 10am					6am- 10am		-	-	Total NOx (kg)
Domestic heating	20	29	159	37	245	19	29	156	36	240	191	286	1551	334	2363	1	2	13	4	20
Motor vehicle	3	4	4	1	11	1	2	2	0	6	336	521	449	68	1374	40	62	53	8	163
Industry	11	16	15	21	63	5	7	7	9	26	33	48	47	63	191	129	193	192	257	771
Outdoor burning	24	73			97	23	68			91	81	244			325	6	17			23
Total	57	122	179	58	416	48	106	165	45	364	641	1099	2048	465	4253	176	274	259	268	977

Table 8-1:	Total daily wintertime emissions by time of day for Te Awamutu
------------	--


Total emissions (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total SOx (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total VOC (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO₂ (t)
Domestic heating	0	1	4	2	7	57	85	468	99	708	3	5	28	7	44
Motor vehicle	6	10	9	1	26	54	83	72	11	220	39	60	52	8	159
Industry	91	132	131	175	530	2	3	3	4	12	50	74	74	99	297
Outdoor burning	1	3			4	8	25			33	3	9			11
Total	99	146	144	178	567	121	196	543	114	974	95	148	154	114	511

	Domestic	: Heating	Outdoo	or burning	Indu	stry	Motor ve	ehicles	Total
	kg/day	%	kg/day	%	kg/day	%	kg/day	%	
January	0	0%	94	25%	275	72%	11	3%	380
February	0	0%	94	34%	173	62%	11	4%	278
March	0	0%	96	41%	128	54%	11	5%	236
April	4	2%	96	39%	137	55%	11	5%	249
Мау	161	43%	96	26%	107	29%	11	3%	375
June	230	68%	97	29%	1	0%	11	3%	339
July	245	59%	97	23%	63	15%	11	3%	416
August	195	42%	97	21%	165	35%	11	2%	468
September	74	18%	100	25%	217	54%	11	3%	402
October	12	3%	100	24%	297	71%	11	3%	419
November	0	0%	100	24%	297	73%	11	3%	408
December	0	0%	94	23%	306	74%	11	3%	411
Total kg year	28241		35332		65915		4094		

Table 8-2:Monthly variations in daily PM10 emissions in Te Awamutu


8.2 Turangi

Around 186 kilograms of PM_{10} is discharged to air in Turangi on an average winter's day. The main source is solid fuel burning for domestic home heating, which contributes around 89% of the daily PM_{10} (Figure 8-3). Outdoor burning contributes 7% and motor vehicles 4%. The contribution of industry to PM_{10} emissions in Turangi is negligible.

Figure 8-3: Relative contribution of sources to daily winter PM_{10} emissions in Turangi

Domestic heating is also the main contributor to CO, $PM_{2.5}$, and VOC emissions in Turangi (Figure 8-4). Motor vehicles are the main source of NOx, SOx and CO₂.

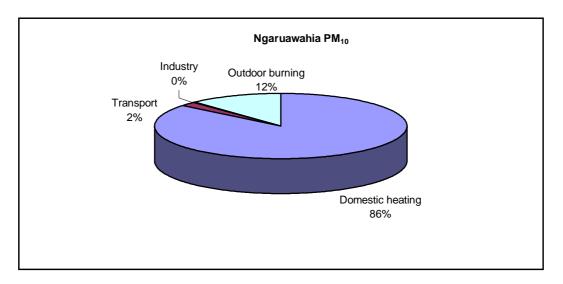
Figure 8-4: Relative contribution of sources to contaminant emissions in Turangi

Because the survey was not designed to collect time of day distributions of fuel use, an assumption has been made that Hamilton daily emission profiles are representative of Turangi contaminant emissions. Based on this assumption, the daily variations of emissions for Turangi are estimated in Table 8-3.

Table 8-4 shows seasonal variations in PM_{10} emissions. Although domestic home heating is the dominant source of PM_{10} emissions during the winter months, during the summer, motor vehicles and outdoor burning are the dominant contributors to PM_{10} emissions.

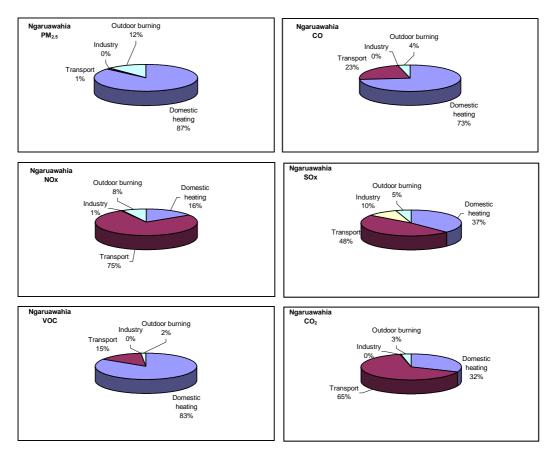
Total emissions (kg)	6am- 10am				Total PM₁₀ kg								4pm- 10pm			6am- 10am		4pm- 10pm		Total NOx (kg)
Domestic heating	13	20	108	25	167	13	20	108	25	166	132	198	1074	231	1636	1	1	7	2	11
Motor vehicle	2	3	3	0	8	1	2	1	0	4	240	372	321	48	981	28	44	38	6	116
Industry	0.4	0.1	0.0	0.0	0.5	0.2	0.1	0.0	0.0	0.3	1	0	0	0	1	1	0	0	0	1
Outdoor burning	3	9			12	3	9			12	10	31			41	1	2			3
Total	19	32	111	25	188	17	30	109	25	182	383	601	1395	280	2659	31	48	46	8	132

Table 8-3: Total daily wintertime emissions by time of data


Total emissions (kg)	6am- 10am	10am- 4pm	4pm- 10pm		Total SOx (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total VOC (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO ₂ (t)
Domestic heating	0	0	3	1	4	39	59	326	69	494	3	4	20	5	32
Motor vehicle	5	7	6	1	19	39	60	51	8	157	28	43	37	6	114
Industry	2	1	0	0	3	0.01	0.00	0.00	0.00	0.01	0.3	0.1	0.0	0.0	0.4
Outdoor burning	0	0			0	1	3			4	0	1			1
Total	7	8	9	2	26	79	122	377	77	655	31	48	57	11	147

	Domesti	c Heating	Outdo	or burning	Indu	stry	Motor v	ehicles	Total
	kg/day	%	kg/day	%	kg/day	%	kg/day	%	
January	0.0	0%	9	51%	0.0	0%	8	49%	17
February	0.0	0%	9	51%	0.0	0%	8	48%	17
March	0.5	3%	10	55%	0.0	0%	8	43%	19
April	8	29%	10	39%	0.0	0.0%	8	31%	26
Мау	102	84%	10	8%	0.5	0.4%	8	7%	121
June	164	89%	12	7%	0.5	0.3%	8	4%	185
July	167	89%	12	7%	0.5	0.3%	8	4%	188
August	147	88%	12	7%	0.5	0.3%	8	5%	168
September	47	73%	9	14%	0.5	0.7%	8	13%	64
October	7	27%	9	37%	0.5	2%	8	34%	24
November	0.4	2%	9	51%	0.0	0%	8	47%	17
December	0.1	0%	9	51%	0.0	0%	8	48%	17
Total kg year	19672		3648		88		2950		

Table 8-4: Monthly variations in daily PM₁₀ emissions in Turangi


8.3 Ngaruawahia

Around 383 kilograms of PM_{10} is discharged to air in Ngaruawahia on an average winter's day. Solid fuel burning for domestic home heating is the main source contributing around 85% of the daily PM_{10} (Figure 8-5). Outdoor burning contributes 12% and motor vehicles 3%. The contribution of industry to PM_{10} emissions in Ngaruawahia is negligible.

Figure 8-5: Relative contribution of sources to daily winter PM_{10} emissions in Ngaruawahia

Domestic heating is also the main contributor to CO, $PM_{2.5}$, and VOC emissions in Ngaruawahia (Figure 8-6). Motor vehicles are the main source of NOx, SOx and CO₂.

Figure 8-6: Relative contribution of sources to contaminant emissions in Ngaruawahia

Because the survey was not designed to collect time of day distributions of fuel use, an assumption has been made that Hamilton daily emission profiles are representative of Ngaruawahia contaminant emissions. Based on this assumption, the daily variations of emissions for Ngaruawahia are estimated in Table 8-5.

Seasonal variations in PM_{10} emissions are shown in Table 8-6. Although domestic home heating is the dominant source of PM_{10} emissions during the winter months, during the summer, motor vehicles and outdoor burning are the dominant contributors to PM_{10} emissions.

Total emissions (kg)	6am- 10am		-	10pm -6am			10am -4pm													Total NOx (kg)
Domestic heating	26	40	214	49	329	24	36	197	45	303	235	352	1908	411	2907	2	2	15	4	23
Motor vehicle	2	4	3	0	10	1	2	2	0	5	298	462	398	60	1218	35	55	47	7	144
Industry	0.5	0.1	0.0	0.0	0.6	0.3	0.1	0.0	0.0	0.4	1	0	0	0	1	1	0	0	0	1
Outdoor burning	11	34			46	11	32			43	39	116			154	3	8			11
Total	41	78	217	50	386	37	71	199	46	352	572	930	2307	471	4280	40	65	62	11	179

Table 8-5:	Total daily wintertime emissions by time of day for Ngaruawahia
------------	---

Total emissions (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total SOx (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total VOC (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO ₂ (t)
Domestic heating	1	1	8	3	14	67	101	553	117	838	4	6	33	8	51
Motor vehicle	6	9	8	1	23	48	74	64	10	195	35	53	46	7	141
Industry	3	1	0	0	4	0.01	0.00	0.00	0.00	0.01	0.4	0.1	0.0	0.0	0.5
Outdoor burning	0	1			2	4	12			16	1	4			5
Total	10	12	16	4	42	119	186	617	127	1049	40	64	79	15	198

	Domesti	c Heating	Outdo	or burning	Indu	stry	Motor ve	ehicles	Total
	kg/day	%	kg/day	%	kg/day	%	kg/day	%	
January	1	3%	28	71%	0.0	0%	10	26%	39
February	1	3%	28	71%	0.0	0%	10	26%	39
March	1	3%	33	75%	0.0	0%	10	22%	44
April	9	17%	33	64%	0.0	0%	10	19%	52
Мау	152	78%	33	17%	0.6	0%	10	5%	196
June	332	85%	46	12%	0.6	0%	10	3%	389
July	329	85%	46	12%	0.6	0%	10	3%	386
August	283	83%	46	14%	0.6	0%	10	3%	339
September	60	58%	33	32%	0.6	1%	10	10%	103
October	4	9%	33	69%	0.6	1%	10	21%	48
November	2	4%	33	74%	0.0	0%	10	22%	45
December	2	4%	28	70%	0.0	0%	10	25%	39
Total kg year	36050		12763		114		3640		

Table 8-6: Monthly variations in daily PM₁₀ emissions in Ngaruawahia

References

Dasch, J. M. 1982: Particulate and gaseous emissions from wood burning fireplaces. *Environmental Science and Technology* 16(10):639-645

ESR. 1999: Otago Inventory of Domestic Emissions. Unpublished report prepared for Otago Regional Council

GVRD. 1998: 1995 Emission Inventory for the Lower Fraser Valley Airshed: Technical Appendix: Detailed Listing of Methodology and Results. Greater Vancouver Regional District and Fraser Valley Regional District

Hennessy, W. 1999: Statement of Evidence – Hearing on proposed coal ban for Christchurch. Environment Canterbury unpublished

Kingett Mitchell Limited. 2006: *Fonterra, Te Awamutu Air Discharge Assessment Report.* Unpublished report accompanying an application for air discharge permit to Waikato Regional Council, March 2006

Kuschel, G.I. and Petersen, J. 1999: *Natural Emissions for the Waikato Region*. NIWA report AK98154. National Institute of Water and Atmospheric Research Ltd., Auckland

Lamb, C. 1999: Christchurch Home Heating Survey: A survey of domestic home heating methods and fuels in the Christchurch metropolitan area. Environment Canterbury Report U00/34

Ministry for the Environment. 1994: Ambient Air Quality Guidelines. Ministry for the Environment, Wellington

Ministry for the Environment. 2002: *Ambient Air Quality Guidelines for New Zealand.* Ministry for the Environment

Ministry of Transport. 1998: Vehicle Fleet Emission Control Strategy – Final Report. Ministry of Transport

NIWA. 1998: *Christchurch Inventory of Total Emissions*. Environment Canterbury Report R98/20, Christchurch, Environment Canterbury

Scott, A. 2004: Impact of Strategies to Reduce Residential Heating Emissions In Christchurch - an update. Unpublished, draft Environment Canterbury Report.

Stern, C. H.; Jaasma, D.R.; Shelton, J.W. and Satterfield G. 1992: Parametric Study of Fireplace Particulate Matter and Carbon Monoxide Emissions, *Journal of the Air and Waste Management Association* 42(6):777-783

USEPA AP42. 2001: *Emissions Database* <u>http://www.epa.gov/ttn/chief/ap42/</u> . Accessed June 2006.

Wilton, E. 2005: *Hamilton Emission Inventory 2005*, Environment Waikato Technical Report 2005/52, Environment Waikato, Hamilton

Wilton, E. and Smith, J. 2006: *Real Life Emissions Testing of Pre 1994 Woodburners in New Zealand*. Environment Waikato Technical Report 2006/05, Environment Waikato, Hamilton

Appendix One: Home Heating Questionnaire

Good morning / afternoon/evening - Is this a home or business number?(- terminate if business)
 Hi, I'm _____from DigiPoll and I am calling on behalf of the Environment Waikato
 May I please speak to an adult in your household who knows about your home heating systems? We are
 currently undertaking a survey in your area on methods of home heating. We wish to know what you use to
 heat your main living area during a typical year. The survey will take about 5 minutes. Is it a good time to talk
 to you now?

2.(a) Do you use any type of electrical heating in your MAIN living area during a typical year?

- (b) What type of electrical heating do you use? Would it be...
 - □ Night Store
 - □ Radiant
 - D Portable Oil Column
 - D Panel
 - □ Fan
 - □ Heat Pump
 - Don't Know/Refused
 - □ Other (specify)
- (c). Do you use any other heating system in your main living area in a typical year? (If yes then question 3 otherwise Q9)
- 3.(a) Do you use any type of gas heating in your MAIN living area during a typical year? (If No then question 4)
- (b) Is it flued or unflued gas heating? If necessary: (A flued gas heating appliance will have an external vent or chimney)
- (c) Which months of the year do you use your gas burner

·	· ·								
🗆 Jan	🛛 Feb	March	🛛 April	🗆 May	🗆 June				
July	🗆 Aug	Sept	Oct	Nov	Dec 🗆				
d) How many days per week would you use your gas burner during									
🛛 Jan	Feb	March	April	May	🗆 June				
Julv	🗆 Aua	Sept	Oct	Nov	Dec Dec				

(e) Do you use mains or bottled gas for home heating?

(f) What size gas bottle do you use?

(f.2) How many times in a winter would you refill your x kg gas bottle? Interviewer: Winter is defined as May to August inclusive.

4.(a) Do you use a log burner in your MAIN living area during a typical year? (This is a fully enclosed burner but does not include multi fuel burner i.e., those that burn coal) (If No then question 5)

🗆 Jan	🗆 Feb	March	🛛 April	🗆 May	🗆 June				
□ July	🗆 Aug	Sept	Oct	Nov	Dec				
(c) How many days per week would you use your log burner during?									
🗆 Jan	🗆 Feb	March	🛛 April	🗆 May	🗆 June				
□ July	□ Aug	Sept	Oct	Nov	Dec				

(d) How old is your log burner?

(e) In a typical year, how many pieces of wood do you use on an average winters day? Interviewers note: winter is defined as May to August inclusive.

- (f) Ask only If they used their log burner during non winter months How many pieces of wood do you use per day during the other months? Interviewers note: winter is defined as May to August inclusive.
- (g) In a typical year, how much wood would you use per year on your log burner? (record wood use in cubic metres - note 1 cord equals 3.6 cubic meters of loosely piled blocks, one trailer equals about 1.65 cubic metres without cage, or 2.2 with cage)
- (h) Do you buy wood for your log burner, or do you receive it free of charge?

(i) What proportion would be bought?

5.(a) Do you use an enclosed burner which burns coal as well as wood – i.e., a multi fuel burner in your MAIN living area during a typical year? (This includes incinerators, pot belly stoves, McKay space heaters etc but does not include open fires.) (If No then question 6)

(b) Which months of the year do you use your multi fuel burner?

🛛 Jan	🗆 Feb	March	April	🛛 May	🗆 June						
July	🗆 Aug	Sept	Oct	Nov	Dec						
(c) How many of	(c) How many days per week would you use your multi fuel burner during?										
🛛 Jan	🗆 Feb	March	April	□ May	🗆 June						
□ July	🗆 Aug	Sept	Oct	□ Nov	Dec						

Te Awamutu, Turangi and Ngaruawahia Emission Inventory - 2006

- (d) How old is your multi fuel burner?
- (e) What type of multi fuel burner is it?
- (f) In a typical year, how much wood do you use on your multi fuel burner per day during the winter? (ask them how many pieces of wood (logs) they use on an average winters day) Interviewer: Winter is defined as May to August inclusive
- (g) ask only If they used their multi fuel burner during non winter months How much wood do you use per day during the other months?
- (h) In a typical year, how much wood would you use per year on your multi fuel burner?_____ (record wood use in cubic metres note 1 cord equals 3.6 cubic metres of loosely piled blocks one trailer equals about 1.65 cubic metres without cage, or 2.2 with
- (i) Do you use coal on your multi fuel burner?
- (j) How many buckets of coal do you use per day during the winter? (how many buckets of coal used on an average winters day) Interviewer: Winter is defined as May to August inclusive.
- (k) Ask only If they used their multi fuel burner during non winter months How much coal do you use per day during the other months?
- (I) Do you buy wood for your multi fuel burner, or do you receive it free of charge?
- (m) What proportion would be bought?
- 6.(a) Do you use an open fire (includes a visor fireplace which is one enclosed on three sides but open to the front) in your MAIN living area during a typical year? (If No then question 7)

(h)	Which m	onths of th	e vear	do vou	use vou	r open fire
	v,	VVIIIOIT III		ic ycai	uo you	use you	

()	, ,	/									
🛛 Jan	□ Feb	March	April	🛛 May	🗆 June						
🛛 July	🗆 Aug	Sept	Oct	Nov	Dec						
(c) How many	(c) How many days per week would you use your open fire during?										
🛛 Jan	🗆 Feb	March	🗆 April	🛛 May	🗆 June						
□ Julv	🗆 Aua	Sept	Oct	□ Nov	Dec						

(d) Do you use wood on your open fire?

(e) On a typical year, how much wood do you use per day during the winter? (ask them how many pieces of wood (logs) they use on an average winters day) Interviewer: Winter is defined as may to August inclusive
 (f) Ack and their area fire during near winter menths. How much here a day during the during the set of t

(f) Ask only If they used their open fire during non winter months How much wood do you use per day during the other months?

(g) In a typical year, how much wood would you use per year on your open fire? (record wood use in cubic metres - note 1 cord equals 3.6 cubic meters of loosely piled blocks one trailer equals about 1.65 cubic metres without cage, or 2.2 with cage)

(h) Do you use coal on your open fire?

(i) How many buckets of coal do you use per day during the winter? (how many buckets of coal used on an average winters day)_____ Interviewer: Winter is defined as may to August inclusive

(j) Ask only If they used their open fire during non winter months How much coal do you use per day during the other months?

(k) Do you buy wood for your open fire, or do you receive it free of charge?

(I) What proportion would be bought?

7.(a) Do you use a pellet burner in your MAIN living area during a typical year? (If No then question 8)

(b) Which months of the year do you use your pellet burner

🛛 Jan	🗆 Feb	March	🗆 April	🗆 May	🗆 June				
July	🗆 Aug	Sept	Oct	Nov	Dec 🗆				
(c) How many days per week would you use your pellet burner during?									
🛛 Jan	🗆 Feb	March	🗆 April	🗆 May	🗆 June				
□ .lulv		Sept	D Oct	□ Nov	Dec.				

(d) How old is your pellet burner?

(e) What make and model is your pellet burner? First, can you tell me the make?

□ Sept

- (e) and what model is your pellet burner?
- (f) In a typical year, how many kilograms of pellets do you use on an average winters day? Interviewers note : winter is defined as May to August inclusive.
- (g) Ask only If they used their pellet burner during non winter months How many kgs of pellets do you use per day during the other months? Interviewers note: winter is defined as May to August inclusive.
- (h) In a typical year, how many kilograms of pellets would you use per year on your pellet burner?
- 8.(a) Do you use any other heating system in your MAIN living area during a typical year? (If No then question 9)
- (b) What type of heating system do you use (if they respond with diesel or oil burner go to question c otherwise go to Q8)

(c) Which months of the year do you use your oil burner

□ Aug

	Jan	□ Feb	March	April	□ May	🗆 June				
	July	🗆 Aug	Sept	Oct	□ Nov	Dec				
(d) How many days per week would you use your diesel/oil burner during?										
	Jan	□ Feb	March	April	May	□ June				

Oct

July

□ Dec

Nov

- (e) How much oil do you use per year?
- 9. Do you burn rubbish or garden waste outside in the open or in an incinerator or rubbish bin

How many days would you burn rubbish outdoors during

- a) winter (June, July, August)
- b) spring (September, October, November)
- c) summer (December, January, February)
- d) autumn (March, April, May)

How much garden waste or rubbish would you burn each session. We are looking for cubic metres, or number of wheelbarrows full per fire.

10. Does you home have insulation?

Ceiling Under floor Wall Cylinder wrap Double glazing None Don't know Other

DEMOGRAPHICS We would like to ask some questions about you now, just to make sure we have a crosssection of people for the survey. We keep this information strictly confidential.

- D1. Would you mind telling me in what year you were born?
- D2. Which of the following describes you and your household situation?
 - Single person below 40 living alone
 - Single person 40 or older living alone
 - Young couple without children
 - Family with oldest child who is school age or younger
 - Family with an adult child still at home
 - Couple without children at home
 - Flatting together
 - Boarder
- D3 With which ethnic group do you most closely relate?

Interviewer: tick gender.

How many people live at your address?

Do you own your home or rent it?

D5 What is your employment status:

Thank you for your time today. Your answers will be very helpful. In case you missed it, my name is ------from DigiPoll in Hamilton. Have a nice day/evening.

Appendix B: Emission factors for domestic heating.

Emission factors for domestic heating were those used in the Ministry for the Environment's (2005) assessment of burner removals to meet the NES in 31 urban areas of New Zealand. With the exception of gas, oil and post 1990 wood burners, these were based largely on the review of New Zealand emission rates carried out for the Christchurch 1999 emission inventory with adaptations made for different burner age categories. The latter review resulted in revised factors for open fires burning wood and the burning of coal on open fires and multi fuel burners. The open fire wood emission factor was reduced from 15 g/kg (used in previous inventories) to 10 g/kg. This was based on a combination of overseas literature, in particular the studies by Stern (1992) and Dasch (1982), and the results of a limited number of tests carried out in New Zealand. The New Zealand tests were carried out by Applied Research and gave emission rates of around 7 g/kg.

An emission factor of 22 g/kg was selected for coal burning on an open fire and was based on the average of the tests carried out in New Zealand, weighted for the more predominant use of bituminous coals, based on the 80% to 20% figures quoted by Hennessy (1999). Previous emission factors were around 33 g/kg. An emission factor for PM_{10} for multi fuel burners burning coal of 28 g/kg was selected based on a weighted average of the test results available for different appliance types.

Emission factors for the post 1995 wood burner categories were based on data collected in Nelson on burner types in different age categories. Gas and oil emission factors were based on factors derived by Angie Scott (pers comm., 2004) based on more recent testing of these appliances.

Domestic heating emission factors for CO, NOx, SOx and CO_2 for all but post 1995 burners were also based on the Christchurch 1999 emission factor revisions.

Emission factors for $PM_{2.5}$ data for the burning of wood are based on the assumption that 100% of the PM_{10} emissions are $PM_{2.5}$ (USEPA, 1997). For coal burning USEPA AP-42 generalised particle size distributions for the $PM_{2.5}$ component were used. Oil burning emission rates were based on AP-42 data for a utility boiler. No data for LPG gas use was available so it was assumed that 100% of the PM_{10} would be in the finer $PM_{2.5}$ size fraction, based on AP-42 data for natural gas.