Air Quality Monitoring Report for Hamilton, Tokoroa, Taupo, Te Kuiti, Matamata, Putaruru, Ngaruawahia, Waihi and Turangi – 2009

Prepared by: Emily Wilton and Melanie Baynes (Environet Limited)

For: Environment Waikato PO Box 4010 HAMILTON EAST

March 2010

Document #: 1646544

Peer reviewed by: Nick Kim	Date	March 2010
Approved for release by: Dominique Noiton	Date	March 2010

Disclaimer

This technical report has been prepared for the use of Waikato Regional Council as a reference document and as such does not constitute Council's policy.

Council requests that if excerpts or inferences are drawn from this document for further use by individuals or organisations, due care should be taken to ensure that the appropriate context has been preserved, and is accurately reflected and referenced in any subsequent spoken or written communication.

While Waikato Regional Council has exercised all reasonable skill and care in controlling the contents of this report, Council accepts no liability in contract, tort or otherwise, for any loss, damage, injury or expense (whether direct, indirect or consequential) arising out of the provision of this information or its use by you or any other party.

Doc #: 1646544

Air Quality Monitoring Report for Hamilton, Tokoroa, Taupo, Te Kuiti, Matamata, Putaruru, Ngaruawahia, Waihi and Turangi – 2009

Environment Waikato

Prepared for Environment Waikato by Emily Wilton and Melanie Baynes Environet Limited 130b Montreal Street Christchurch

March 2010

Executive Summary

In the Waikato Region the main contaminant of concern is PM_{10} (particles in the air less than 10 microns in diameter). The Ministry for the Environment specifies that the National Environmental Standard (NES) for PM_{10} of 50 μg m⁻³ (24-hour average) must be achieved by 2013. One exceedence of this standard is allowed per year, and any subsequent breach of the PM_{10} standard must be publicly notified within a month of it occurring. The NES requires air quality monitoring to take place in areas that are likely to exceed the standard for PM_{10} .

During 2009, PM_{10} monitoring was carried out at Hamilton, Tokoroa, Taupo, Te Kuiti, Matamata, Putaruru, Ngaruawahia, Waihi and Turangi. Monitoring for benzene, toluene and xylenes also took place in Hamilton during 2009. The 2009 Air Quality Monitoring report compares PM_{10} concentrations to the NES for PM_{10} and to the Ministry for the Environment's air quality guidelines and indicator categories.

In Hamilton, there were three exceedences of 50 μg m⁻³ for PM₁₀ during 2009. The maximum measured PM₁₀ concentration of 101 μg m⁻³ was recorded on 25 September and coincides with a dust storm in Australia. This storm also resulted in concentrations in excess of 50 μg m⁻³ at Tokoroa (57 μg m⁻³), Matamata (93 μg m⁻³) and Ngaruawahia (113 μg m⁻³). Table E1 shows summary PM₁₀ data for all sites for 2009.

Table E1: Summary of PM₁₀ monitoring results for 2009.

	Maximum measured concentration µg m ⁻³⁻	Measured exceedences of 50 μg m ⁻³	Number of NES breaches	Annual Average
Hamilton	101* μg m ⁻³	3	2	14 μg m ⁻³
Tokoroa	80 μg m ⁻³	17	16	18 μg m ⁻³
Taupo	66 μg m ⁻³	7	6	17 μg m ⁻³
Te Kuiti	53 μg m ⁻³	4	3	17 μg m ⁻³
Matamata*	93 μg m ⁻³	1	0	13 μg m ⁻³
Putaruru	55 μg m ⁻³	2	1	15 μg m ⁻³
Ngaruawahia*	113 μg m ⁻³	1	0	14 μg m ⁻³
Waihi	32 μg m ⁻³	0	0	12 μg m ⁻³
Turangi	25 μg m ⁻³	0	0	9 μg m ⁻³

^{*} non winter exceedences associated with dust storms in Australia.

Concentrations of benzene measured in Hamilton were within the 2009 guideline of 10 μ g m⁻³ and the 2010 guideline of 3.6 μ g m⁻³. The highest annual concentration was measured at the Greenwood Street monitoring site and was 3.2 μ g m⁻³. Concentrations of toluene and xylene were well within acceptable levels.

Table of Contents

1 Ir	ntroduction	1
1.1	Reporting period	3
2 N	flethodology flethodology	5
3 H	lamilton	7
3.1	Air Quality Monitoring in Hamilton	7
3.2	10	8
3.3	· · · · · · · · · · · · · · · · · · ·	13
3.4	, , , , , , , , , , , , , , , , , , , ,	14
	okoroa	16
4.1	Air Quality Monitoring in Tokoroa	16
4.2	10	17
4.3 5 T	Daily variations in PM ₁₀ and meteorology on high pollution days aupo	22 26
5.1 5.2	Air Quality Monitoring in Taupo PM ₁₀ concentrations in Taupo	26 27
5.3	1	31
	e Kuiti	33
6.1	Air Quality Monitoring in Te Kuiti	33
6.2	· · · · · · · · · · · · · · · · · · ·	33
6.3	•	37
7 N	Matamata Taran Maramata Matamata Matamata Matamata Matamata Matamata Matamata Matamata Matamata Matamata Matam	39
7.1	Air Quality Monitoring in Matamata	39
7.2	10	39
7.3	, ,	42
8 F	Putaruru	43
8.1	Air Quality Monitoring in Putaruru	43
8.2	10	44
9 N	Igaruawahia	48
9.1	Air Quality Monitoring in Ngaruawahia	48
9.2 10 V	PM ₁₀ Concentrations in Ngaruawahia	49 53
10. 10.:	,	53
	2 PM ₁₀ concentrations in Waihi urangi	54 58
	•	
11. 11.:		58 59
	Summary	63
	ences	64
1/6161	しいしても	04

List of Figures

Figure 3.1: Hamilton airshed and air quality monitoring site (Source: Environment Waika 2010).	ato. 8
Figure 3.2: 24-hour average PM ₁₀ concentrations measured at Peachgrove Road during 20	_
Tigure 3.2. 24-nour average Fivi10 concentrations measured at Feacingrove road during 20	9
Figure 3.3: Comparison of PM ₁₀ concentrations measured at Peachgrove Road in Hamil	lton
from 2000 to 2009 to air quality indicator categories.	10
Figure 3.4: Comparison of daily PM ₁₀ concentrations each month for 2009 to air qua	ality
indicator categories.	10
Figure 3.5: Number of days when 50 µg m ⁻³ was exceeded, the maximum concentration a	anc
the second highest concentration from 2006 to 2009.	11
Figure 3.6: Annual average benzene measured at Hamilton sites ((February 2003 – Febru	ıary
2004) (July 2004 - July 2005), (September 2005 - September 2006), (December - Decem	bei
for 2007, 2008 and 2009)).	13
Figure 3.8: Hourly average PM ₁₀ , wind speed, wind direction, humidity and temperature	or
days when PM_{10} concentrations exceeded 50 $\mu g \ m^{-3}$ at the Peachgrove Road site.	15
Figure 4.1: Tokoroa Airshed and air quality monitoring site (Source: Environment Waika	ato
2010).	17
Figure 4.2: Daily winter PM ₁₀ concentrations measured in Tokoroa during 2009.	18
Figure 4.3: Comparison of PM_{10} concentrations measured in Tokoroa from 2001 to 2009 to	aiı
quality indicator categories.	20
Figure 4.4: Comparison of daily PM_{10} concentrations each month during 2009 to air qua	ality
indicator categories.	20
Figure 4.5: Number of days when 50 $\mu g\ m^{-3}$ was exceeded, the maximum concentration	tion
measured and the second highest concentration from 2006 to 2009.	21
Figure 4.6: Hourly average PM_{10} , wind speed, wind direction and temperature on days where M_{10} is M_{10} , where M_{10} is M_{10} , where M_{10} is M_{10} , where M_{10} is M_{10} .	hen
PM ₁₀ concentrations exceeded the NES at the Tokoroa site.	24
Figure 4.7: Hourly average PM_{10} , wind speed, wind direction and temperature on	25
September that coincides with a Australian dust storm.	25
Figure 5.1: Taupo Airshed and air quality monitoring site (Source: Environment Waika	
2010).	27
Figure 5.2: Daily winter PM ₁₀ concentrations measured at the Taupo site during 2009.	28
Figure 5.3: Comparison of PM ₁₀ concentrations measured at the Taupo site from 2001 to 20	009
to air quality indicator categories.	28
Figure 5.4: Comparison of daily PM ₁₀ concentrations each month during 2009 to air qua	ality
indicator categories.	29
Figure 5.5: Number of days when 50 μg m ⁻³ was exceeded, the maximum concentration	tion
measured using the BAM and the second highest concentration from 2006 to 2009.	29
Figure 5.6: Hourly average PM ₁₀ , wind speed, wind direction and temperature on days when the speed is the speed of the s	
PM ₁₀ concentrations exceeded 50 μg m ⁻³ at Taupo.	32

2010).	o, 33
,	34
Figure 6.3: Comparison of PM ₁₀ concentrations measured at the Te Kuiti site from 2003 t 2009 to air quality indicator categories.	10 35
Figure 6.4: Comparison of daily PM ₁₀ concentrations each month during 2009 to air qualit	
	ty 85
Figure 6.5: Number of days when the NES was exceeded, the maximum concentration	n
measured and the second highest concentration from 2006 to 2009.	86
Figure 6.6: Hourly average PM ₁₀ , wind speed, wind direction, and temperature on days whe	'n
PM ₁₀ concentrations exceeded 50 μg m ⁻³ at Te Kuiti.	88
Figure 7.1: Matamata Airshed and air quality monitoring site (Source: Environment Waikato 2010).	o, 89
Figure 7.2: Daily winter PM ₁₀ concentrations measured at the Matamata site during 2009.	10
Figure 7.3: Comparison of PM ₁₀ concentrations measured at the Matamata site from 2006 t	to
2009 to air quality indicator categories.	10
Figure 7.4: Comparison of daily PM ₁₀ concentrations each month during 2009 to air qualit	ty
indicator categories. 4	1
Figure 7.5: Number of days when 50 $\mu g\ m^{-3}$ was exceeded, the maximum concentration an	ıd
the second highest concentration from 2006 to 2009.	₊1
Figure 7.6: Hourly average PM_{10} , wind speed, wind direction, temperature and humidity o	n
days when PM ₁₀ concentrations exceeded 50 µg m ⁻³ at Matamata.	2
Figure 8.1: Putaruru Airshed and air quality monitoring site (Source: Environment Waikato	٥,
2010).	13
Figure 8.2: Putaruru air quality monitor (Source: Environment Waikato).	4
Figure 8.3: Daily winter PM ₁₀ concentrations measured at the Putaruru site during 2009.	15
Figure 8.4: Comparison of PM_{10} concentrations measured at the Putaruru site from 2006 t	to
2009 to air quality indicator categories.	5
Figure 8.5: Comparison of daily PM ₁₀ concentrations for 2009 to air quality indicator categories 4	s. I6
Figure 8.6: Number of days when 50 $\mu g\ m^{\text{-}3}$ was exceeded, the maximum concentration an	ıd
the second highest concentration from 2006 to 2009.	16
Figure 9.1: Ngaruawahia Airshed and monitoring site (Source: Environment Waikato, 2010). 4	-8
Figure 9.2: Ngaruawahia air quality monitor (Source: Environment Waikato).	9
Figure 9.3: Daily winter PM_{10} concentrations measured at the Ngaruawahia site during 2009.5	0
Figure 9.4: Comparison of PM_{10} concentrations measured at the Ngaruawahia site in 2008 an	ıd
2009 air quality indicator categories. 5	1
Figure 9.5: Comparison of daily PM_{10} concentrations each month during 2009 to air quality	ty
indicator categories. 5	1
Figure 9.6: Number of days when 50 $\mu g \ m^{\text{-}3}$ was exceeded, the maximum concentration an	ıd
the second highest concentration in 2008 and 2009.	2

Figure 10.1: Waihi Airshed and air quality monitoring site (Source: Environment Waikato, 2010)
53
Figure 10.2: Waihi air quality monitor (Source: Environment Waikato, 2009).
Figure 10.3: Daily winter PM_{10} concentrations measured at the Waihi site during 2009. 55
Figure 10.4: Comparison of PM_{10} concentrations measured at the Waihi site in 2008 and 2009
to air quality indicator categories. 56
Figure 10.5: Comparison of daily PM_{10} concentrations during 2009 to air quality indicator
categories. 56
Figure 10.6: Number of days when 50 $\mu g \ m^{3}$ was exceeded, the maximum concentration and
the second highest concentration in 2008 and 2009. 57
Figure 11.1: Turangi Airshed and air quality monitoring site (Source: Environment Waikato,
2010). 58
Figure 11.2: Turangi air quality monitor (Source: Environment Waikato, 2010). 59
Figure 11.3: Daily winter PM_{10} concentrations measured at the Turangi site from March to
December 2009. 60
Figure 11.4: Comparison of $PM_{\rm 10}$ concentrations measured at the Turangi site in 2009 to air
quality indicator categories. 61
Figure 11.5: Comparison of daily $PM_{10}\ concentrations$ for 2009 to air quality indicator
categories. 61

List of Tables

Table 1.1: National Environmental Standards for ambient air quality (MfE, 2004) 2
Table 1.2: Ambient air quality guidelines for New Zealand (MfE 2002)2
Table 1.3: Environmental Performance Indicator categories for air quality (MfE, 2002) 3
Table 3.1: Summary of PM ₁₀ concentrations measured at Peachgrove Road in Hamilton from
2000 to 2009
Table 3.2: Annual average concentrations of volatile organic compounds (VOCs) at Hamilton
sites between December 2008 – December 2009
Table 4.1: Dates and concentrations for 2009 exceedences of 50 μg m ⁻³ in Tokoroa 18
Table 4.2: Summary of PM_{10} concentrations measured at the Tokoroa monitoring site from
2001 to 2009
Table 5.1: Summary of PM_{10} concentrations measured at the Taupo monitoring site from
2001 to 2009*
Table 6.1: Summary of PM ₁₀ concentrations measured at the Te Kuiti monitoring site from
2003 to 2009
Table 7.1: Summary of PM_{10} concentrations measured at the Matamata monitoring site from
2005 to 2009
Table 8.1: Summary of PM ₁₀ concentrations measured at the Putaruru monitoring site from
2006 to 2009
Table 9.1: Summary of PM ₁₀ concentrations measured at the Ngaruawahia monitoring site for
2008 and 2009
Table 10.1: Summary of PM ₁₀ concentrations measured at the Waihi monitoring site for 2008
and 2009
Table 11.1: Summary of PM_{10} concentrations measured at the Turangi monitoring site for
2009
Table 12.1: Summary of PM ₁₀ monitoring results for 2009

1 Introduction

1.1 Background

In the Waikato Region the main air contaminant of concern is PM_{10} (particles in the air less than 10 microns in diameter). Concentrations of PM_{10} have historically exceeded the National Environmental Standards for Ambient Air Quality (NES) in Hamilton, Tokoroa, Taupo, Putaruru and Te Kuiti during winter months.

In 2009, concentrations of PM_{10} were measured at nine sites in the Waikato Region. The sites include; Hamilton, Tokoroa, Taupo, Te Kuiti, Matamata, Putaruru, Ngaruawahia, Waihi and Turangi. In Hamilton additional monitoring for benzene, toluene and xylenes took place.

In 2004 the Ministry for the Environment (MfE) introduced the National Environmental Standard (NES) for air quality (Table 1.1). Air quality monitoring throughout New Zealand has shown that over 30 urban areas have measured PM₁₀ concentrations that exceed the NES for PM₁₀. Based on this information and air quality monitoring of other contaminants in other urban areas, it would seem unlikely that national standards or guidelines for contaminants other than PM₁₀ would be in breach. The exception to this may be benzo(a)pyrene concentrations of which appear to occur well in excess of guideline concentrations in Christchurch. The majority of resources for air quality monitoring in the Waikato Region have focused on PM₁₀.

The Ministry for the Environment also provides guidelines for ambient air quality (Table 1.2) and air quality indicator categories to assist in the presentation and management of air quality in New Zealand (Table 1.3). Air quality monitoring data in this report are presented relative to air quality guidelines and these indicator categories. These categories provide a useful perspective on the overall quality of the air and provide a valuable tool for evaluating trends in concentrations over time.

In the Waikato Region previous PM₁₀ monitoring has taken place at Hamilton, Tokoroa, Taupo, Te Kuiti, Matamata, Putaruru, Ngaruawahia and Waihi. Passive sampling for benzene has been carried out since 2003 in Hamilton. Monitoring of PAHs was carried out in Hamilton in 2007 and 2008.

Table 1.1: National Environmental Standards for ambient air quality (MfE, 2004).

	NES values		
Contaminant	Concentration ^a	Averaging Period	Allowable exceedences per year
Carbon monoxide	10 mg m ⁻³	8-hour	1
Particles (PM ₁₀)	50 μg m ⁻³	24-hour	1
Nitrogen dioxide	200 μg m ⁻³	1-hour	9
Sulphur dioxide b	350 μg m ⁻³	1-hour	9
Sulphur dioxide b	570 μg m ⁻³	1-hour	0
Ozone	150 μg m ⁻³	1-hour	0

Table 1.2: Ambient air quality guidelines for New Zealand (MfE 2002).

Contaminant	2002 guideline values			
	Concentration ^a	Averaging Period		
Carbon monoxide	30 mg m ⁻³ 10 mg m ⁻³	1-hour 8-hour		
Particles (PM ₁₀)	50 μg m ⁻³ 20 μg m ⁻³	24-hour Annual		
Nitrogen dioxide	$200 \mu g m^{-3}$ $100 \mu g m^{-3}$	1-hour 24-hour		
Sulphur dioxide ^b	350 μg m ⁻³ 120 μg m ⁻³	1-hour 24-hour		
Ozone	150 μg m ⁻³ 100 μg m ⁻³	1-hour 8-hour		
Hydrogen sulphide c	7 μg m ⁻³	1-hour		
Lead ^d	0.2 μg m ⁻³ (lead content of PM ₁₀)	3-month moving, calculated monthly		
Benzene (year 2002)	10 μg m ⁻³	Annual		
Benzene (year 2010)	3.6 μg m ⁻³	Annual		
1,3-Butadiene	$2.4~\mu g~m^{-3}$	Annual		
Formaldehyde	100 μg m ⁻³	30-minutes		
Acetaldehyde	30 μg m ⁻³	Annual		
Benzo(a)pyrene	0.0003 μg m ⁻³	Annual		
Mercury (inorganic) d Mercury (organic)	0.33 μg m ⁻³ 0.13 μg m ⁻³	Annual Annual		
Chromium VI ^d Chromium metal and chromium III	0.0011 μg m ⁻³ 0.11 μg m ⁻³	Annual Annual		
Arsenic (inorganic) ^d Arsine	0.0055 μg m ⁻³ 0.055 μg m ⁻³	Annual Annual		

Page 2 Document #: 16465441

Notes for Tables 1.1 and 1.2:

Table 1.3: Environmental Performance Indicator categories for air quality (MfE, 2002).

Category	Value relative to guideline	Comment
Excellent	Less than 10% of the guideline	Of little concern: if maximum values are less than a tenth of the guideline, average values are likely to be much less
Good	Between 10% and 33% of the guideline	Peak measurements in this range are unlikely to affect air quality
Acceptable	Between 33% and 66% of the guideline	A broad category, where maximum values might be of concern in some sensitive locations but generally they are at a level which does not warrant urgent action
Alert	Between 66% and 100% of the guideline	This is a warning level, which can lead to exceedences if trends are not curbed
Action	More than 100% of the guideline	Exceedences of the guideline are a cause for concern and warrant action, particularly if they occur on a regular basis

Although the MfE categories are primarily used as air quality indicators, the Waikato Regional Plan takes a further regulatory step by specifying designated policy responses that should correspond to each zone. Policy 3 of the Air Module of the Waikato Regional Plan contains regional ambient air quality categories and the designated response that the Council will take when developing air quality management framework. Policy 3 states that air quality in the "Excellent" category is to be protected, while "Good" air quality is to be maintained or protected. "Acceptable" air quality is to be maintained. Air quality in the "Alert" category is to be maintained or enhanced. For air quality in the "Action" category, the only designated policy response is to aim to enhance (improve) the situation.

1.2 Reporting period

The reporting period for PM_{10} for most sites in this report is from 1 January to 31 December 2009. In Turangi the reporting period is from March to December 2009. The reporting period for benzene, toluene and xylenes is 17 December 2008 to 17 December 2009.

^a All values apply to the gas corrected to standard conditions of temperature (0° C) and pressure (1 atmosphere).

^b The sulphur dioxide guideline values do not apply to sulphur acid mist.

^c The hydrogen sulphide value is based on odour nuisance and may be unsuitable for use in geothermal areas.

^d The guideline values for metals are for inhalation exposure only; they do not include exposure from other routes such as ingestion. These other routes should be considered in assessments where appropriate.

In 2006 Environment Waikato introduced a September to August reporting period. This reporting period was introduced for a number of reasons including ensuring that results were reported as soon as possible after the peak winter PM_{10} concentrations and to ensure compliance with the NES reporting requirements. The 2009 annual air quality report has been prepared based on a reporting period of January to December. This is the same format as historical reports.

Page 4 Document #: 16465441

2 Methodology

Measured concentrations of PM_{10} can be influenced by the method used to monitor PM_{10} . From 2006 a number of air quality monitoring sites in the Waikato region have had gravimetric samplers run in conjunction with historical methods. Environment Waikato staff have used the results to determine site specific differences between methods and data were adjusted for gravimetric equivalence. Monitoring data for 2007 was adjusted based on equations detailed in the 2007 monitoring report (Wilton & Baynes, 2008). Prior to 2007 data were not adjusted. Adjustment equations were updated in 2008 as a result of additional monitoring and these equations have been used in the 2009 report.

In 2009, at the Peachgrove Road air quality monitoring site in Hamilton, PM_{10} concentrations were monitored using a Tapered Elemental Oscillation Microbalance (TEOM) with a sample temperature setting of 40 degrees centigrade. Concentrations of PM_{10} measured using the TEOM in 2009 were based on the same adjustment for 2008 reporting (equation 2.1).

Corrected $PM_{10} = 1.19975 \times RawTEOM - 3.9182$

Equation 2.1

In Tokoroa, a ThermoAndersen FH62 C14 BAM has been used to monitor air quality since 2005. A Sequential Partisol gravimetric sampler was co-located at this site during 2007 to 2008. Equation 2.2 shows the adjustments made to the FH62 data for consistency with the gravimetric method.

Corrected $PM_{10} = 10^{(1.09945logFH62 - 0.08595)}$

Equation 2.2

Gravimetric sampling was conducted at the Gillies Street site in Taupo from March 2007. Concentrations of PM_{10} measured using the BAM during 2009 were adjusted based on equation 2.3.

Corrected $PM_{10} = 1.255BAM - 1.538$

Equation 2.3

Air quality data at the Putaruru site has been adjusted based on Equation 2.4.

Corrected $PM_{10} = 1.117B - 1.6074$

Equation 2.4

Concentrations of PM_{10} at Te Kuiti, Matamata, Ngaruawahia and Putaruru site were measured using an FH62 C14 BAM. No adjustments have been made to concentrations measured at these sites. In the case of Te Kuiti, two years of reference sampling has confirmed that no adjustment of BAM data is necessary. For the other towns, the possible need for any site-specific correction remains to be assessed.

At the Hamilton, Tokoroa, Taupo, Te Kuiti and Matamata air quality monitoring sites, meteorological data, including temperature, wind speed and wind direction were

collected. Relative humidity was also collected at Hamilton and Matamata. Meteorological data was not available for the Putaruru, Ngaruawahia, Waihi and Turangi sites. Meteorological data were compared with PM_{10} on days when pollution was elevated.

Environment Waikato staff have managed most sites in the Waikato air quality monitoring network since August 2005. Prior to that the monitoring network was operated and maintained by NIWA.

Hourly data from the BAM monitors are recorded and logged by an iQuest iRIS 320 datalogger. Results are telemetered hourly to Environment Waikato and stored in the hydrotel database. Calibration checks are periodically run on all telemetered instruments, and transient spikes due to calibration are removed from the ambient monitoring data record.

Page 6 Document #: 16465441

3 Hamilton

3.1 Air Quality Monitoring in Hamilton

In Hamilton, since November 1997, air quality has been measured at a monitoring site in Peachgrove Road located on the south-east side of Hamilton City. During 2009, PM₁₀, benzene, ethyl-benzene, toluene and xylenes were measured at Peachgrove Road. The site meets the requirements of the "Residential Peak" site classification as described in the 'Good Practice Guideline for Air Quality Monitoring and Data Management 2009' report (MfE, 2009). Benzene, ethyl-benzene, toluene and xylenes (BTEX) have been monitored during recent years at Bridge Street, Claudelands Road, Hamilton Intermediate School, Greenwood Street and Tristram Street. Figure 3.1 shows the location of the main Peachgrove Road air quality monitoring site in Hamilton.

During 2009, PM₁₀ monitoring at Peachgrove Road was carried out using a Tapered Elemental Oscillating Microbalance (TEOM) with a sample temperature setting of 40°C. The PM₁₀ data were collected at the Peachgrove Road site as ten minute averages and subsequently hourly averages and 24 hour averages were calculated from these data.

Passive sampling for the volatile organic compounds (VOCs) benzene, ethylbenzene, toluene and xylenes was carried out using 3M Passive Diffusion Monitors. The method used is as described in Stevenson and Narsey (1999) with filters being deployed for periods of three months. The analysis was carried out by Hill Laboratories in Hamilton. While this type of passive sampling is recommended as a screening method only, it is the most common approach to benzene monitoring in New Zealand and is significantly more cost effective than the method recommended by the Ministry for the Environment's ambient air quality guidelines (MfE 2002).

Figure 3.1: Hamilton Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

3.2 PM₁₀ concentrations for Hamilton

In Hamilton, there were three exceedences of 50 μg m⁻³ (24-hour average) during 2009. A maximum concentration of 101 μg m⁻³ was recorded on 25 September. This exceedence coincided with a dust storm event in Australia. Two other exceedences of the NES for PM₁₀ occurred during winter, on 3 June (54 μg m⁻³) and 19 June (54 μg m⁻³). Two breaches of the NES were reported for Hamilton in 2009.

Figure 3.2 shows the 24-hour average PM_{10} concentrations measured at Hamilton during 2009. In comparison during 2007 and 2008 there were no exceedences of 50 $\mu g \ m^{-3}$ or breaches of the NES for PM_{10} .

Page 8 Document #: 16465441

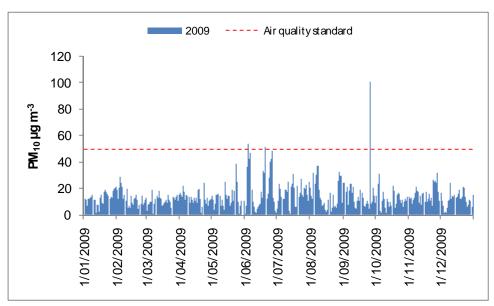


Figure 3.2: 24-hour average PM₁₀ concentrations measured at Peachgrove Road during 2009.

Daily PM_{10} concentrations measured from 2000 to 2009 to the MfE air quality indicator categories (shown in Table 1.3) are compared in Figure 3.3. The majority of the PM_{10} concentrations measured were less than 66% of the air quality guideline, within the "acceptable" and "good" air quality categories. Only one percent of PM_{10} concentrations were in the alert category during 2009. Figure 3.4 shows the seasonal variations in the distribution of PM_{10} concentrations during 2009. Figure 3.5 shows the number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009.

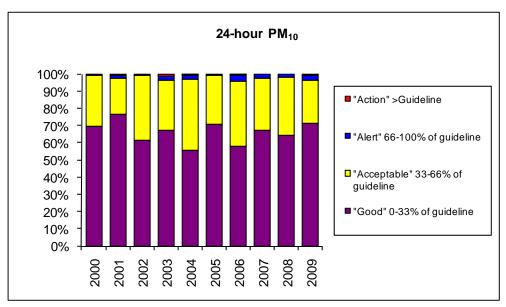


Figure 3.3: Comparison of PM₁₀ concentrations measured at Peachgrove Road in Hamilton from 2000 to 2009 to air quality indicator categories.

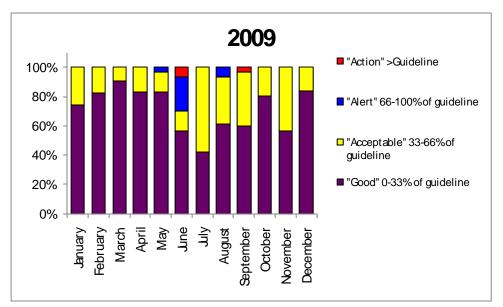


Figure 3.4: Comparison of daily PM_{10} concentrations each month for 2009 to air quality indicator categories.

Page 10 Document #: 16465441

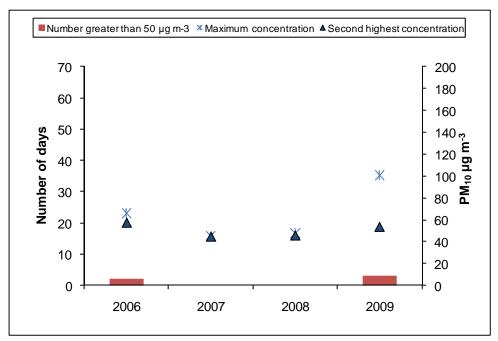


Figure 3.5: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009.

The annual average PM_{10} concentration for Hamilton for 2009 was 14 μg m⁻³ and is similar to previous year's data. The Ministry for the Environment specifies an annual average guideline for PM_{10} of 20 μg m⁻³. An annual average PM_{10} concentration is not specified in the NES.

Summary statistics for PM_{10} monitoring results from the Hamilton site from 2000 are shown in Table 3.1. Since 2007, concentrations have been adjusted for differences between the TEOM and gravimetric sampling methods as detailed in Section 2 of this report.

Table 3.1: Summary of PM₁₀ concentrations measured at Peachgrove Road in Hamilton from 2000 to 2009.

	2000	2001	2002	2003	2004	2005	2006	2007*	2008	2009
"Good" 0-33% of guideline	70%	77%	61%	67%	56%	70%	58%	67%	64%	71%
"Acceptable" 33-66% of guideline	30%	21%	38%	29%	41%	29%	38%	30%	34%	25%
"Alert" 66-100% of guideline	1%	2%	1%	3%	3%	1%	4%	2%	2%	3%
"Action" >Guideline	0%	1%	0%	1%	0%	0%	1%	0%	0%	1%
Percentage of valid data	91%	70%	93%	91%	94%	77%	99%	66%	99%	99%
Annual average (µg m ⁻³)	15	15	16	16	17	15	17	15	15	14
Measured exceedences	0	3	0	4	1	0	2	0	0	3
Annual maximum (24-hr average µg m ⁻³)	43	67	36	62	55	37	66	46	48	101
Number of records	334	256	340	331	344	281	363	242	364	363

^{*}Data post 2007 is adjusted for gravimetric equivalency.

Page 12 Document #: 1646544

3.3 Concentrations of Benzene, Toluene and Xylenes

In Hamilton, monitoring of benzene at the Peachgrove Road air monitoring site and at a high-density traffic area at Bridge Street has taken place since 2003. In 2004 an additional benzene sampling site was established at the intersection of Claudelands Road and Victoria Street (Claudelands Bridge). This is also a high density traffic area. Additional sites were established in 2006 in Tristram Street, Greenwood Street and at Hamilton Intermediate School.

Benzene concentrations measured at all locations in Hamilton during 2009 were within the Ministry for the Environment's 2009 guideline for benzene (10 μ g m⁻³ per year) and met the 2010 annual guideline of 3.6 μ g m⁻³ (Table 3.2). The highest average annual concentration during 2009 was 3.2 μ g m⁻³ and was measured at the Greenwood Street monitoring site.

Results for 2009 suggest that the original decrease in benzene concentrations observed between 2003 and 2007 has tapered (Figure 3.6). These earlier decreases were attributed to changes in fuel specifications and improved vehicle technology (Smith, 2007).

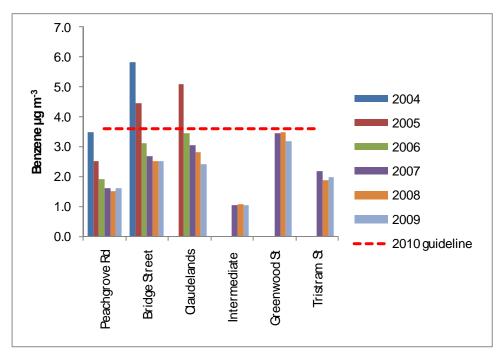


Figure 3.6: Annual average benzene measured at Hamilton sites ((February 2003 – February 2004) (July 2004 – July 2005), (September 2005 – September 2006), (December – December for 2007, 2008 and 2009)).

Toluene and xylene were also measured at the benzene monitoring sites for each year. A Ministry for the Environment (MfE) document discussing amendments to the 1994 ambient air quality guidelines suggests an annual threshold of 190 µg m⁻³ and 950 µg m⁻³ for toluene and total xylenes respectively (MfE, 2000). Concentrations of

benzene and xylene measured in Hamilton at all sites were significantly lower than the thresholds suggested by MfE (2000).

Table 3.2: Annual average concentrations of volatile organic compounds (VOCs) at Hamilton sites between December 2008 to December 2009.

	Bridge St	Peachgrove Road	Claudelands	Intermediate	Greenwood Street	Tristram Street	Guideline ^a	
μg m ⁻³								
Benzene	2.5	1.6	2.4	1.0	3.2	2.0	3.6 (10 ^a)	
Toluene	10.6	6.8	10.7	4.6	15.4	9.3	190 ^b	
Total Xylenes	9.1	5.6	8.7	3.9	10.0	7.4	950 ^b	

^a The 2009 guideline for benzene of 10 μg m⁻³ reduced to 3.6 μg m⁻³ in 2010.

3.4 Daily variations in PM_{10} and meteorology on high pollution days

Figure 3.8 shows the variations in meteorological conditions and hourly average PM_{10} concentrations on the three days when the 24-hour average PM_{10} measured in Hamilton using the TEOM concentration exceeded 50 μ g m⁻³.

The dates these occurred on were 3 and 19 of June and 25 September and the corresponding PM_{10} concentrations (24-hour average) were, 54, 52 and 101 $\mu g \ m^{-3}$.

On 3 and 19 June PM_{10} concentrations were typical of a high pollution episode with a small morning and higher evening peak in concentrations coinciding with low wind speeds. On 25 September, when the NES breach coincided with the Australian dust storm, the daily variations in concentrations were not typical of urban air pollution in New Zealand. Figure 3.7 shows a large peak in concentrations extending from 5am to 11am on this day.

Page 14 Document #: 1646544

^b There are currently no guideline values for toluene and xylenes. Threshold values used here are from proposed amendments to the 1994 ambient air quality guidelines.

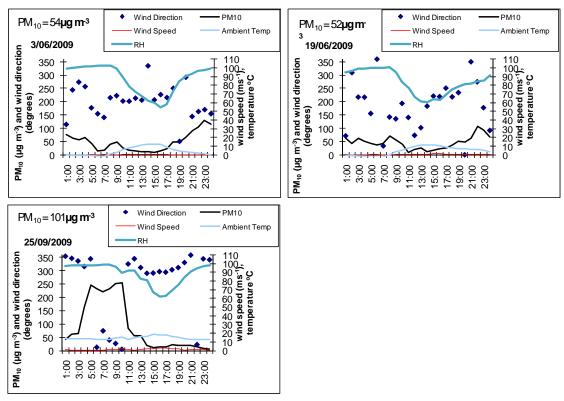


Figure 3.7: Hourly average PM_{10} , wind speed, wind direction, humidity and temperature on days when PM_{10} concentrations exceeded 50 μg m⁻³ at the Peachgrove Road site.

4 Tokoroa

4.1 Air Quality Monitoring in Tokoroa

In Tokoroa, monitoring for PM₁₀ has been carried out in since 2001 at the Billah Street Reserve air quality monitoring site, located west of central Tokoroa. The monitoring site meets the requirements of the "Residential Neighbourhood" site classification as described in the *Good Practice Guideline for Air Quality Monitoring and Data Management 2009*, report (MfE, 2009).

In 1999, some air quality monitoring was carried out in Tokoroa at the South Waikato Council Offices, on the east side of the town. Results of the 1999 monitoring are not included in this air quality monitoring report due to uncertainties surrounding the monitoring method.

A MET ONE series 1020 BAM was used to monitor PM_{10} from 2001 to September 2005 at Billah Street site. In September 2005 the MET ONE instrument was replaced with a ThermoAndersen FH62 C14 BAM. The FH62 BAM records data at ten minute intervals. Figure 4.1 shows the Tokoroa Airshed and the location of the air quality monitor in Tokoroa.

Page 16 Document #: 1646544

Figure 4.1: Tokoroa Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

4.2 PM₁₀ concentrations in Tokoroa

Figure 4.2 shows daily average PM_{10} concentrations measured at the Tokoroa site during 2009. There were 17 measured PM_{10} concentrations that exceeded 50 μ g m⁻³ using the FH62 BAM adjusted for gravimetric equivalency (Table 4.1). The maximum concentration of 80 μ g m⁻³ (24-hour average) was measured on 22 June. This is similar in magnitude to the highest PM_{10} concentrations measured in 2007 (91 μ g m⁻³) and 2008 (85 μ g m⁻³).

Date	PM ₁₀ μg m ⁻³	Rank	Date	PM ₁₀ μg m ⁻³	Rank
22 June 2009	80	1	18 June 2009	60	9
25 June 2009	77	2	16 July 2009	58	10
24 June 2009	71	3	2 June 2009	57	11
23 June 2009	69	4	19 June 2009	57	12
7 July 2009	66	5	25 Sept 2009	57	13
22 May 2009	63	6	5 June 2009	56	14
6 July 2009	61	7	17 June 2009	55	15
29 May 2009	61	8	21 June 2009	52	16
			3 June 2009	51	17

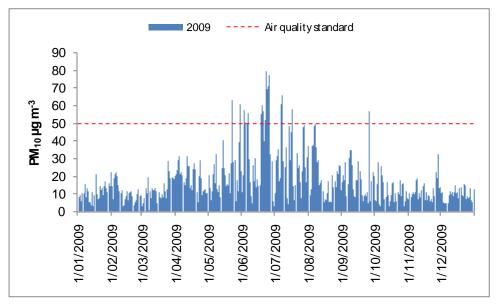


Figure 4.2: Daily winter PM₁₀ concentrations measured in Tokoroa during 2009.

Figure 4.3 shows changes in PM_{10} concentrations relative to air quality indicator categories at the Tokoroa site from 2001 to 2009. Figure 4.4 shows the seasonal variations in the distribution of PM_{10} concentrations for 2009. In June 37% of days resulted in PM_{10} concentrations that were in the 'alert' category. The number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009 are shown in Figure 4.5.

It is noted that Met One BAM was changed to an FH62 BAM in September 2005, and a change in baseline readings was observed at that point (Smith, 2006). In 2007 and 2008, site-specific calibration against a gravimetric method was carried out. Comparison of results from the two co-located instruments now suggest that:

Page 18 Document #: 1646544

- The previous BAM was recording an artificially high baseline reading, because the new instrument is accurate (compared to the gravimetric standard method) at low PM₁₀ concentrations, and
- The new BAM requires a significant upward correction across the mid and upper ranges, in the order of approximately 19% at a PM₁₀ concentration of 50 μg m⁻³. Although site-specific calibration data is only available for the newer instrument, it is also likely that the older BAM would have required a similar range correction to bring its results into line with gravimetric results in Tokoroa (pers comm., Nick Kim, Environment Waikato, 2008).

The net result of these two corrections for all data collected in Tokoroa prior to September 2005 would be to reduce the annual average, but increase the peaks (and the non-compliance frequency).

In this report the approach taken has been to report only calibration-corrected data collected on the newer FH62 BAM during the monitoring years from 2006. Retrospective estimates of air quality in Tokoroa from 2001 to 2005 may form a part of future work involving analysis of trends.

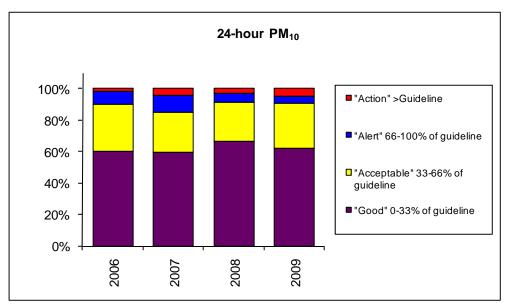


Figure 4.3: Comparison of PM_{10} concentrations measured in Tokoroa from 2006 to 2009 to air quality indicator categories.

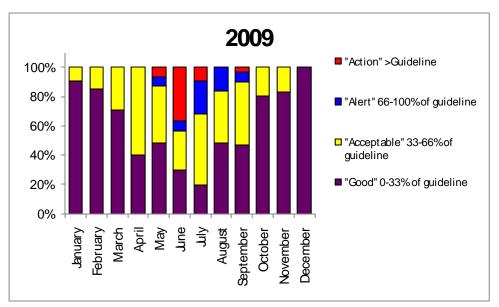


Figure 4.4: Comparison of daily PM₁₀ concentrations each month during 2009 to air quality indicator categories.

Page 20 Document #: 1646544

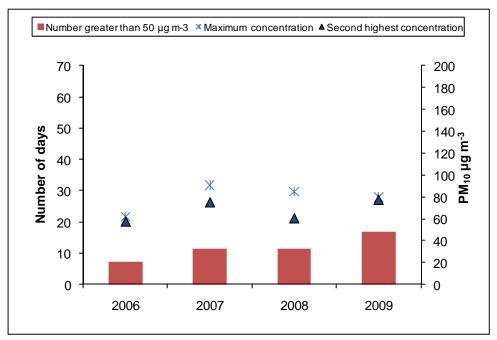
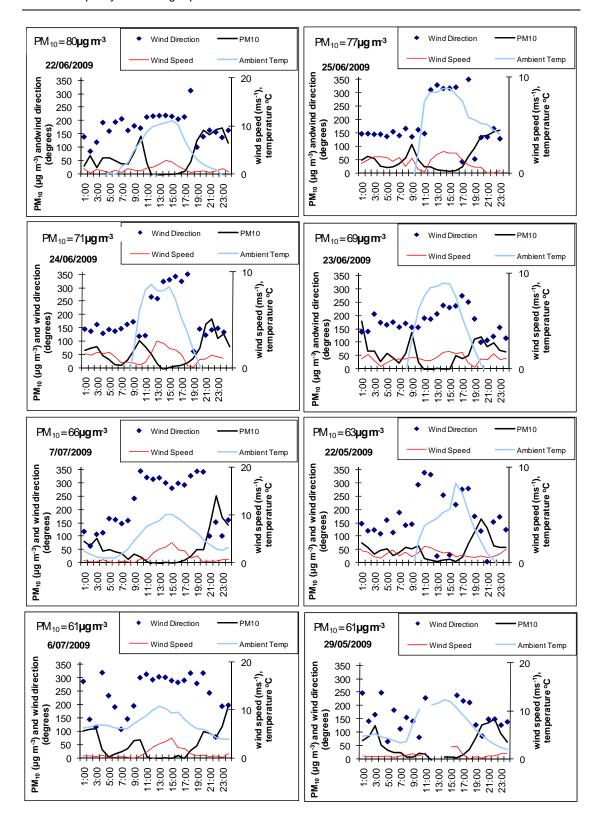


Figure 4.5: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration measured and the second highest concentration from 2006 to 2009.

During 2009, the annual average PM_{10} concentration for Tokoroa was 18 μ g m⁻³. This is slightly higher than 2008 (16 μ g m⁻³) but similar to 2007 (19 μ g m⁻³) and 2006 (17 μ g m⁻³) annual averages. Table 4.2 shows the summary statistics for PM_{10} monitoring results.

Table 4.2: Summary of PM_{10} concentrations measured at the Tokoroa monitoring site from 2006 to 2009.


	2006	2007	2008	2009
"Good" 0-33% of guideline	60%	60%	66%	62%
"Acceptable" 33-66% of guideline	30%	25%	25%	29%
"Alert" 66-100% of guideline	8%	11%	5%	5%
"Action" >Guideline	3%	5%	3%	5%
Percentage of valid data	99%	66%	99%	100%
Annual average (μg m ⁻³)	17	19	16	18
Measured exceedence	9	11	12	17
Annual maximum (µg m ⁻³)	62	91	85	80
Number of records	360	241	361	364

4.3 Daily variations in PM_{10} and meteorology on high pollution days

Figure 4.6 shows the variations in meteorological conditions and hourly average PM_{10} concentrations during winter when the 24-hour average PM_{10} measured at Tokoroa exceeded 50 μ g m⁻³. Figure 4.7 shows the meteorological conditions for 25 September when the 24-hour PM_{10} concentration measured 57 μ g m⁻³ and coincides with a dust storm in Australia.

On most days, the highest peak in PM_{10} concentrations occurred during the evening period, with a second peak in concentrations occurring in the early morning both coinciding with low wind speeds and typically a south east wind direction. The exception to the latter is 5 June when concentrations were elevated during the early morning (12am-6am) and mid morning. A wind direction change around 11am resulted in lower evening concentrations than typical for a high pollution event.

Page 22 Document #: 1646544

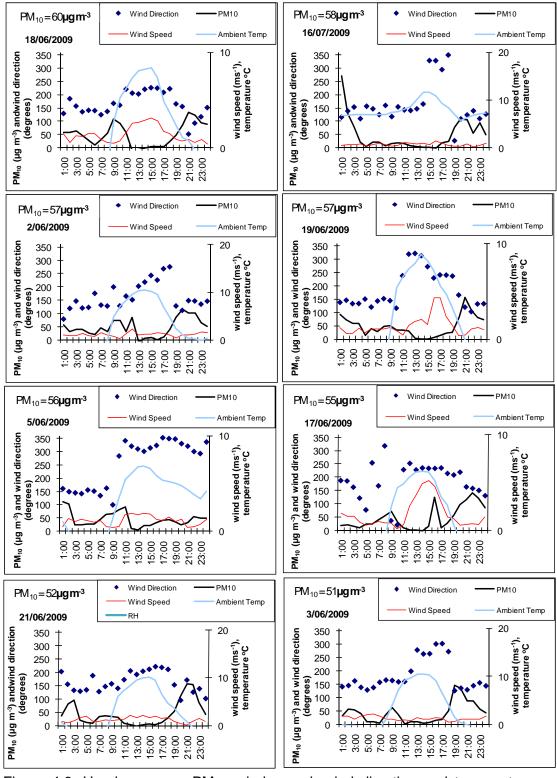


Figure 4.6: Hourly average PM₁₀, wind speed, wind direction and temperature on days when PM₁₀ concentrations exceeded the NES at the Tokoroa site.

Page 24 Document #: 1646544

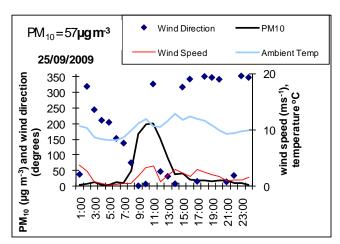


Figure 4.7: Hourly average PM_{10} , wind speed, wind direction and temperature on 25 September that coincides with an Australian dust storm.

5 Taupo

5.1 Air Quality Monitoring in Taupo

The air quality monitoring site for Taupo is located at Gillies Avenue Reserve in central Taupo and was established in November 2000. The site meets the requirements of the "Residential Neighbourhood" site classification as described in the 'Good Practice Guideline for Air Quality Monitoring and Data Management 2009' report (MfE, 2009).

A FH62 C14 BAM has measured PM₁₀ concentrations since March 2007. Gravimetric sampling using a Rupprecht and Patashnick Partisol Model 2000 PM₁₀ sampler also took place at the Gillies Avenue Site during 2007 and 2008.

Prior to 2005, PM₁₀ was monitored in Taupo on a one day in three basis at the Gillies Avenue Reserve site using a Rupprecht and Patashnick Partisol Model 2000 PM₁₀ sampler. In January 2005 a FH62 C14 BAM continuous PM₁₀ monitoring station was established at Taupo Primary School. The site meets the requirements of the "Residential Neighbourhood" site classification (MfE, 2000).

Operation of the Gillies Avenue Reserve Partisol Model 2000 PM₁₀ sampler continued throughout 2006 to evaluate the spatial variation of PM₁₀ concentrations between Gillies Avenue and Taupo Primary School.

The maximum recorded 24-hour PM_{10} concentration at the Taupo Primary School site in 2006 was 24.8 μg m⁻³ whereas the maximum recorded 24-hour PM_{10} concentration at the Gillies Avenue Reserve site was 89 μg m⁻³. The results from the 2006 Monitoring Report (Smith, 2006) found that the Taupo Primary School site was not a suitable site for compliance with NES Regulation 15, that requires monitoring at the location where contaminant concentrations (or frequency of exceedences) are greatest. On 17 March 2007 the FH62 C14 BAM was moved from Taupo Primary School back to the Gillies Avenue Reserve site.

Gravimetric sampling using the Partisol Model 2000 PM_{10} sampler also took place at the Gillies Avenue Site during 2008. The sampling regime was approximately one day in three, with a midnight to midnight filter exposure period. The sampling was carried out by the Institute of Geological & Nuclear Sciences (GNS) on behalf of Environment Waikato.

Meteorological instrumentation was installed when the FH62 BAM was installed at the Primary School site in 2006. Wind speed, wind direction, air temperature, and relative humidity data were measured.

Figure 5.1 shows the Taupo Airshed and the location of the monitoring site in Taupo.

Page 26 Document #: 1646544

Figure 5.1: Taupo Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

5.2 PM₁₀ concentrations in Taupo

Figure 5.2 shows daily average PM_{10} concentrations measured at the Taupo site during 2009. Seven exceedences of 50 $\mu g \ m^{-3}$ were recorded at the Taupo site, with a maximum measured PM_{10} concentration of 66 $\mu g \ m^{-3}$ measured on 24 June. This is similar in magnitude to maximum concentrations measured in 2008 (73 $\mu g \ m^{-3}$) and 2007 (64 $\mu g \ m^{-3}$). Six breaches of the NES were reported for Taupo for 2009.

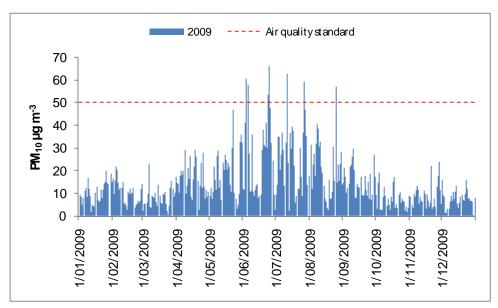


Figure 5.2: Daily winter PM₁₀ concentrations measured at the Taupo site during 2009.

The changes in PM_{10} concentrations relative to air quality indicator categories at the Taupo site from 2006 to 2009 are shown in Figure 5.3. Results suggest that PM_{10} concentrations measured during 2006 were lower than the following years because of the change in monitoring location for that year, but most other years have a similar distribution in PM_{10} concentrations. Figure 5.4 shows the seasonal variations in the distribution of PM_{10} concentrations for 2009. Figure 5.5 shows the number of days when 50 μ g m⁻³ was exceeded, the maximum concentration and the second highest concentration for 2006 to 2009.

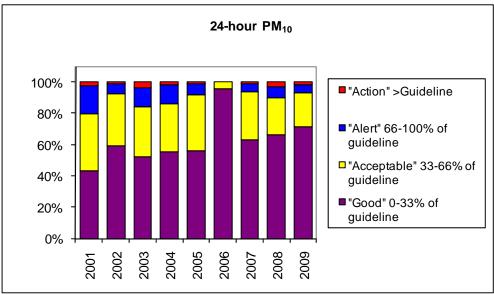


Figure 5.3: Comparison of PM_{10} concentrations measured at the Taupo site from 2001 to 2009 to air quality indicator categories.

Page 28 Document #: 1646544

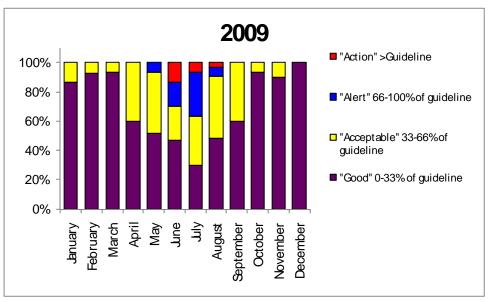


Figure 5.4: Comparison of daily PM₁₀ concentrations each month during 2009 to air quality indicator categories.

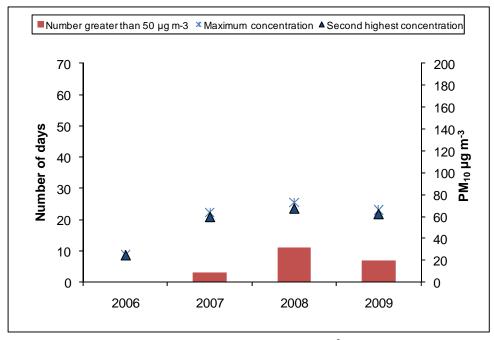


Figure 5.5: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration measured using the BAM and the second highest concentration from 2006 to 2009.

The annual average PM_{10} concentration for 2009 is 15 μ g m⁻³, which is slightly lower than the 2008 annual average PM_{10} concentration of 17 μ g m⁻³. Summary statistics for PM_{10} monitoring results from 2001 to 2009 are shown in Table 5.1.

Table 5.1: Summary of PM₁₀ concentrations measured at the Taupo monitoring site from 2001 to 2009*.

2001	2002	2003	2004	2005	2006	2007	2008	2009
43%	59%	52%	55%	56%	96%	63%	66%	71%
36%	33%	32%	30%	36%	4%	31%	24%	22%
18%	7%	12%	12%	7%	0%	5%	7%	5%
2%	1%	4%	2%	1%	0%	1%	3%	2%
12%	21%	29%	29%	30%	93%	78%	99%	99%
20	17	18	17	16	9	15	17	15
7	6	12	6	3	0	3	11	7
57	54	62	65	52	25	64	73	66
44	76	106	105	111	338	283	361	363
	43% 36% 18% 2% 12% 20 7 57	43% 59% 36% 33% 18% 7% 2% 1% 12% 21% 20 17 7 6 57 54	43% 59% 52% 36% 33% 32% 18% 7% 12% 2% 1% 4% 12% 21% 29% 20 17 18 7 6 12 57 54 62	43% 59% 52% 55% 36% 33% 32% 30% 18% 7% 12% 12% 2% 1% 4% 2% 12% 21% 29% 29% 20 17 18 17 7 6 12 6 57 54 62 65	43% 59% 52% 55% 56% 36% 33% 32% 30% 36% 18% 7% 12% 12% 7% 2% 1% 4% 2% 1% 12% 21% 29% 29% 30% 20 17 18 17 16 7 6 12 6 3 57 54 62 65 52	43% 59% 52% 55% 56% 96% 36% 33% 32% 30% 36% 4% 18% 7% 12% 12% 7% 0% 2% 1% 4% 2% 1% 0% 12% 21% 29% 29% 30% 93% 20 17 18 17 16 9 7 6 12 6 3 0 57 54 62 65 52 25	43% 59% 52% 55% 56% 96% 63% 36% 33% 32% 30% 36% 4% 31% 18% 7% 12% 12% 7% 0% 5% 2% 1% 4% 2% 1% 0% 1% 12% 21% 29% 29% 30% 93% 78% 20 17 18 17 16 9 15 7 6 12 6 3 0 3 57 54 62 65 52 25 64	43% 59% 52% 55% 56% 96% 63% 66% 36% 33% 32% 30% 36% 4% 31% 24% 18% 7% 12% 12% 7% 0% 5% 7% 2% 1% 0% 1% 3% 12% 21% 29% 29% 30% 93% 78% 99% 20 17 18 17 16 9 15 17 7 6 12 6 3 0 3 11 57 54 62 65 52 25 64 73

^{*2007} and 2008 data has been updated in this report based on a recent adjustment equation. Data prior to 2007 have not been adjusted for gravimetric equivalency. Note the 2008 monitoring report used a different equation and reported six exceedences of 50 µg m⁻³ for 2007 compared with three exceedences reported here.

Page 30 Document #: 1646544

5.3 Daily variations in PM₁₀ and meteorology on high pollution days

Hourly average PM_{10} concentrations on days when the 24-hour average PM_{10} measured at Taupo exceeded 50 μg m⁻³ are shown in Figure 5.6. Exceedences (highest to lowest) occurred on 24 June, 10 July, 3 June, 26 July, 4 June and 23 June.

On most days daily variations in PM_{10} are consistent with typical high pollution episodes in urban areas of New Zealand whereby concentrations peak in the evening period with a smaller peak often occurring around 9am. Concentrations can also be elevated during the early morning period as a result of the evening pollution episode from the previous day.

In Taupo, high PM_{10} concentrations typically occur when the wind is from an easterly or south easterly direction and wind speeds are low. During the daytime the wind shifts to westerly, returning to east/south east during the evening.

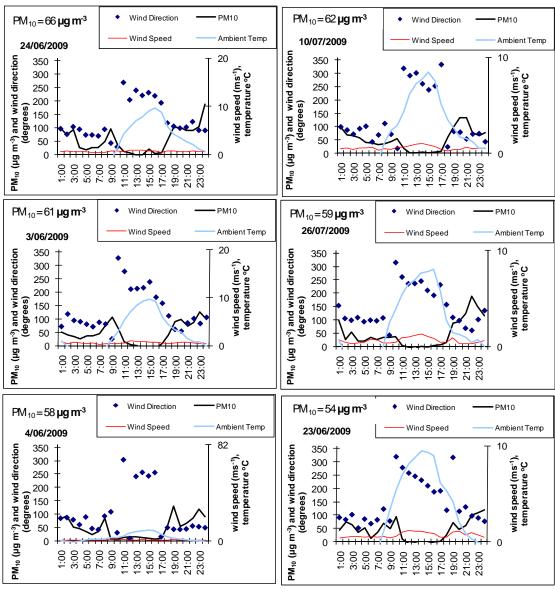


Figure 5.6: Hourly average PM_{10} , wind speed, wind direction and temperature on days when PM_{10} concentrations exceeded 50 $\mu g \ m^{-3}$ at $Taupo^1$.

Page 32 Document #: 1646544

 $^{^{1}}$ A graph was not prepared for 24 August when PM₁₀ concentrations exceeded 50 µg m⁻³ because the hourly BAM data were not considered valid on this day. The 24-hour average concentration of 57 µg m⁻³ was based on Sequential Partisol data on this day.

6 Te Kuiti

6.1 Air Quality Monitoring in Te Kuiti

During 2009, air quality monitoring in Te Kuiti took place at the Te Kuiti City Council Offices off Queen Street. This site has been used since 2003 and was used during 1998 to monitor PM₁₀ (Figure 6.1). Wilton (2002) provides further descriptions of the air quality monitoring site, including a map and site layout in the 'Air Quality Monitoring Report – Waikato Region' report. The site meets the requirements of the "Residential Neighbourhood" site classification as described in the 'Good Practice Guideline for Air Quality Monitoring and Data Management 2009' report (MfE, 2009).

In 2009, concentrations of PM₁₀ were measured at the site using a FH62 C14 BAM.

Figure 6.1: Te Kuiti Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

6.2 PM₁₀ Concentrations in Te Kuiti

Figure 6.2 shows the daily average PM_{10} concentrations measured at the Te Kuiti site in 2009. The maximum measured PM_{10} concentration was 53 μg m⁻³ (24-hour average) and was recorded on 4 June. Exceedences of 50 μg m⁻³ for PM_{10} also occurred on 10 July (52 μg m⁻³), 24 July (51 μg m⁻³) and 3 June (51 μg m⁻³). There were three breaches of the NES in 2009 compared with two in 2008 and three in 2007.

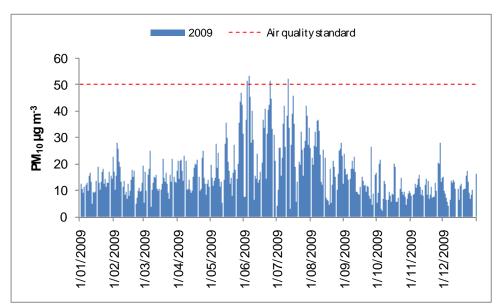


Figure 6.2: Daily winter PM_{10} concentrations measured at the Te Kuiti site during 2009.

Figure 6.3 shows the changes in PM_{10} concentrations from 2003 to 2009 relative to air quality indicator categories for Te Kuiti. Figure 6.4 shows the seasonal variations in the distribution of PM_{10} concentrations for 2009 and Figure 6.5 shows the number of days when 50 μ g m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009.

Page 34 Document #: 1646544

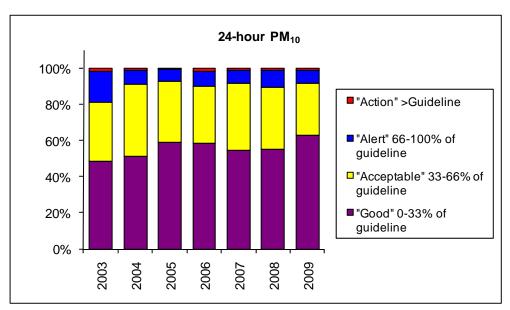


Figure 6.3: Comparison of PM_{10} concentrations measured at the Te Kuiti site from 2003 to 2009 to air quality indicator categories.

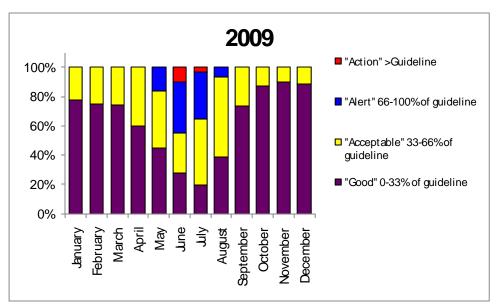


Figure 6.4: Comparison of daily PM₁₀ concentrations each month during 2009 to air quality indicator categories.

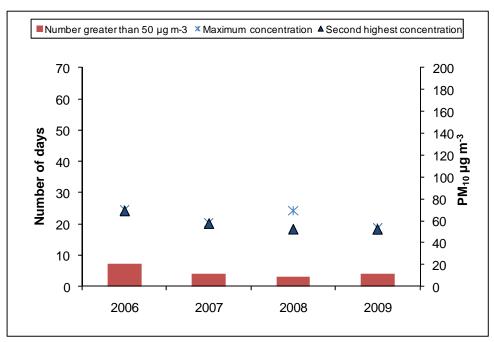


Figure 6.5: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration measured and the second highest concentration from 2006 to 2009.

In 2009 the estimated annual average PM_{10} concentration is 17 μg m⁻³. This is largely consistent with the annual average PM_{10} concentration for Te Kuiti from 2003 and 2008 (Table 6.1).

Page 36 Document #: 1646544

Table 6.1: Summary of PM_{10} concentrations measured at the Te Kuiti monitoring site from 2003 to 2009.

	2003	2004	2005	2006	2007	2008	2009
"Good" 0-33% of guideline	48%	51%	59%	58%	54%	55%	63%
"Acceptable" 33-66% of guideline	32%	40%	34%	31%	37%	35%	29%
"Alert" 66-100% of guideline	17%	8%	7%	9%	7%	9%	8%
"Action" >Guideline	1.7%	1.4%	1%	2%	1%	1%	1%
Percentage of valid data	63%	95%	92%	99%	79%	99%	99%
Annual average (µg m-3)	18	18	17	18	18	18	17
Measured exceedences	5	5	2	7	4	3	4
Annual maximum (µg m-3)	59	61	54	70	58	52	53
Number of records	229	346	337	363	287	362	360

6.3 Daily variations in PM_{10} and meteorology on high pollution days

Variations in hourly average PM_{10} and meteorological variables on days when 24-hour average PM_{10} concentrations exceeded 50 μg m⁻³ in Te Kuiti are shown in Figure 6.5. Daily variations in PM_{10} concentrations are typical of high pollution episodes in New Zealand and occur when wind speed is low. The wind direction during the evening period on these days appears to be generally from a southerly direction.

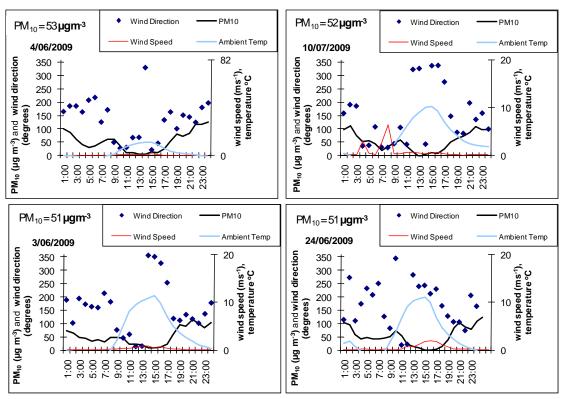


Figure 6.6: Hourly average PM_{10} , wind speed, wind direction, and temperature on days when PM_{10} concentrations exceeded 50 μg m⁻³ at Te Kuiti.

Page 38 Document #: 1646544

7 Matamata

7.1 Air Quality Monitoring in Matamata

Matamata is situated approximately 41 km east of Hamilton. Air quality monitoring in Matamata commenced in June 2005 at the air quality monitoring site is located at the Playcentre grounds on Farmers Road (Figure 7.1). The site meets the requirements of the 'Residential Neighbourhood' site classification as described in the 'Good Practice Guideline for Air Quality Monitoring and Data Management 2009' report (MfE, 2009).

A FH62 C14 BAM measures PM₁₀ concentrations at the Matamata Playcentre. Meteorological data are also collected, including wind speed and direction at 6 meters, ambient air temperature and relative humidity. The site was installed by Watercare Services Limited and is operated and maintained by Environment Waikato staff. The BAM continuously measures PM₁₀ data and it is logged at ten minute intervals.

Figure 7.1: Matamata Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

7.2 PM₁₀ concentrations in Matamata

Figure 7.2 shows the daily average PM_{10} concentrations measured at the Matamata site for 2009. The maximum measured PM_{10} concentration was 93 μg m⁻³ and was measured on 25 September 2009. This date coincides with dust storms in Australia that impacted on air quality in certain parts of New Zealand. The second highest

 PM_{10} concentration was 36 μg m⁻³ and was measured in June. The latter concentration is similar to the highest wintertime concentration during winter 2008 of 34 μg m⁻³.

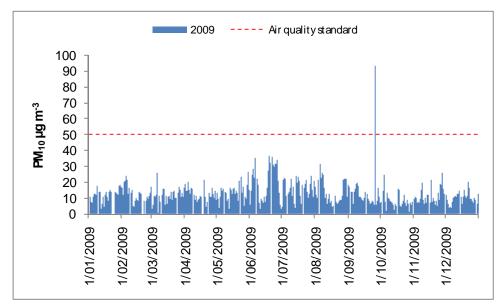


Figure 7.2: Daily winter PM₁₀ concentrations measured at the Matamata site during 2009.

Concentrations of PM_{10} measured at the Matamata air quality monitoring site are compared to the MfE (2000) air quality indicator category in Figure 7.3. Concentrations are typically less than 66% of the NES. Figure 7.4 shows the seasonal variations in the distribution of PM_{10} concentrations for 2009. The number of days when 50 μ g m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009 are shown in Figure 7.5.

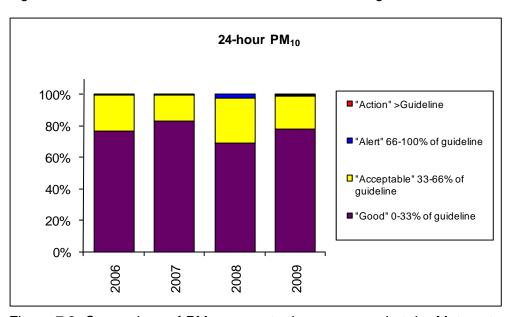


Figure 7.3: Comparison of PM_{10} concentrations measured at the Matamata site from 2006 to 2009 to air quality indicator categories.

Page 40 Document #: 1646544

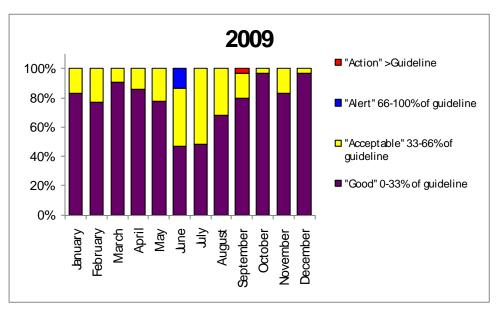


Figure 7.4: Comparison of daily PM₁₀ concentrations each month during 2009 to air quality indicator categories.

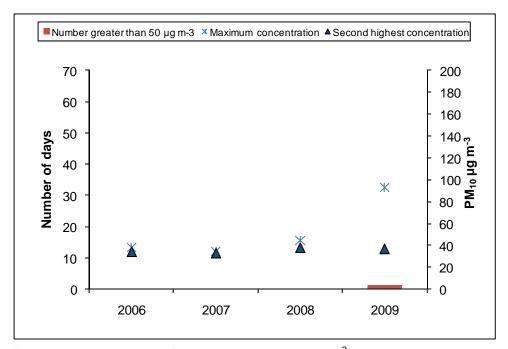


Figure 7.5: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009.

The annual average PM_{10} concentration for Matamata for 2009 is 13 μg m⁻³. Summary statistics for PM_{10} monitoring results are shown in Table 7.1.

Table 7.1: Summary of PM₁₀ concentrations measured at the Matamata monitoring site from 2005 to 2009.

	2005	2006	2007	2008	2009
"Good" 0-33% of guideline	81%	77%	83%	69%	78%
"Acceptable" 33-66% of guideline	18%	23%	16%	29%	21%
"Alert" 66-100% of guideline	1%	1%	0%	2%	1%
"Action" >Guideline	0%	0%	0%	0%	0%
Percentage of valid data	51%	99%	79%	100%	98%
Annual average (µg m ⁻³)	12	13	12	15	13
Measured exceedences	0	0	0	0	1
Annual maximum (μg m ⁻³)	36	38	34	45	93
Number of records	187	362	287	365	359

7.3 Daily variations in PM_{10} and meteorology on high pollution days

Daily variations in PM_{10} concentrations and meteorological variables on 25 September when concentrations measured 93 μg m⁻³ (24-hour average) are shown in Figure 7.6. Hourly average PM_{10} concentrations peaked at 7am and reached around 300 μg m⁻³.

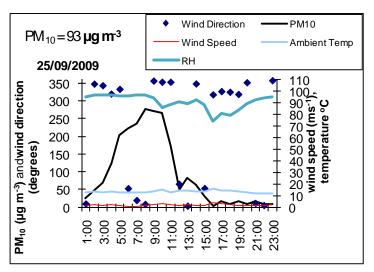


Figure 7.6: Hourly average PM_{10} , wind speed, wind direction, temperature and humidity on days when PM_{10} concentrations exceeded 50 $\mu g m^{-3}$ at Matamata.

Page 42 Document #: 1646544

8 Putaruru

8.1 Air Quality Monitoring in Putaruru

Putaruru is located 65 kilometres southeast of Hamilton and is close to Lake Arapuni on the Waikato River. It is situated mid way between Tokoroa and Tirau on State Highway One, in the South Waikato District and has a population of around 3000 people. Putaruru occupies a flat to gently undulating site, and to the east the land rises to the Mamaku Range.

A new monitoring site was established at the Bowling Club on Arapuni Street in Putaruru, in July 2006 (Figure 8.1). The map reference for the site is NZMS260 T15:533-457. Daily concentrations of PM_{10} have been measured since the site was established. Data is adjusted for gravimetric equivalency.

Figure 8.1: Putaruru Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

Figure 8.2: Putaruru air quality monitor (Source: Environment Waikato, 2009).

8.2 PM₁₀ Concentrations in Putaruru

Figure 8.3 shows the daily average PM_{10} concentrations measured at Putaruru during 2009. The maximum concentration of 55 µg m⁻³ was recorded on 22 and 23 June. A further exceedence of the 50 µg m⁻³ threshold occurred on 24 June (52 µg m⁻³) giving two breaches of the NES for 2009. In 2008, two summer time exceedences of 50 µg m⁻³ were recorded. These exceedences were attributed to road works that were taking place near the air quality monitor. There were no measured winter time exceedences of the NES during 2008. Two exceedences of 50 µg m⁻³ were recorded during 2007 resulting in one breach of the NES.

Page 44 Document #: 1646544

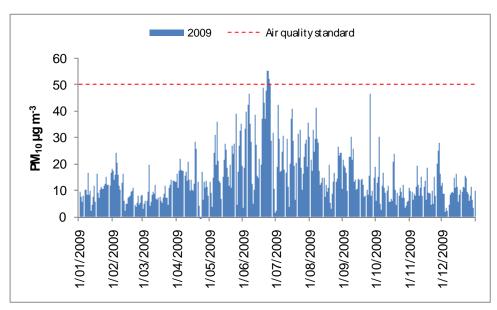


Figure 8.3: Daily winter PM_{10} concentrations measured at the Putaruru site during 2009.

Figure 8.4 compares PM_{10} concentrations measured at Putaruru to the MfE (2000) air quality indicator category. A similar distribution in PM_{10} concentrations across all years is observed. Figure 8.5 shows seasonal variations in the distribution of PM_{10} concentrations for 2009. Figure 8.6 shows the number of days when 50 μ g m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009.

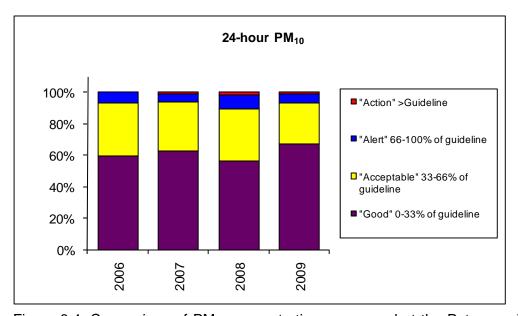


Figure 8.4: Comparison of PM_{10} concentrations measured at the Putaruru site from 2006 to 2009 to air quality indicator categories.

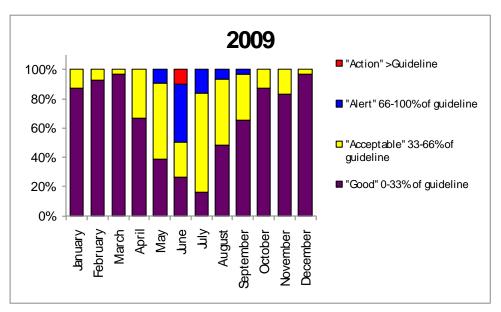


Figure 8.5: Comparison of daily PM₁₀ concentrations for 2009 to air quality indicator categories.

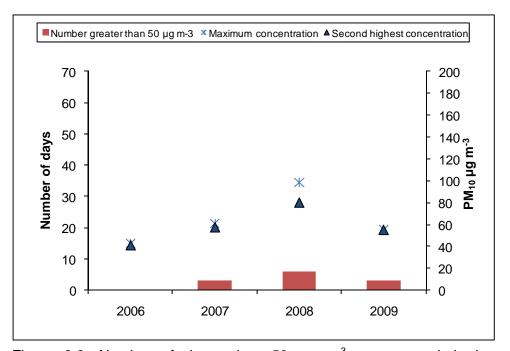


Figure 8.6: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2009.

In 2009, the annual average PM_{10} concentration for Putaruru was 15 μ g m⁻³. This compares with an annual average PM_{10} guideline of 20 μ g m⁻³ (MfE, 2002). Summary statistics for PM_{10} monitoring results are shown in Table 8.1.

Page 46 Document #: 1646544

Table 8.1: Summary of PM_{10} concentrations measured at the Putaruru monitoring site from 2006 to 2009.

	2006	2007	2008	2009
"Good" 0-33% of guideline	60%	62%	56%	67%
"Acceptable" 33-66% of guideline	34%	31%	33%	26%
"Alert" 66-100% of guideline	7%	5%	9%	6%
"Action" >Guideline	0%	1%	2%	1%
Percentage of valid data	45%	100%	99%	100%
Annual average (µg m ⁻³)	16	16	18	15
Measured exceedences	0	3	4	3
Annual maximum (µg m ⁻³)	42	56	45	55
Number of records	166	364	365	364

9 Ngaruawahia

9.1 Air Quality Monitoring in Ngaruawahia

Ngaruawahia is located 19 kilometres north west of Hamilton and is situated at the junction of the Waikato and Waipa Rivers in the central Waikato basin. To the west of the town the land is hilly, rising to the Hakarimata Range.

In 2008 a new monitoring site was established at Herschel Street, about 50 metres away from the corner of Ellery Street and Herschel Street in Ngaruawahia (Figure 9.1).

A ThermoAndersen FH62 C14 BAM measures PM₁₀ concentrations at Ngaruawahia (Figure 9.2).

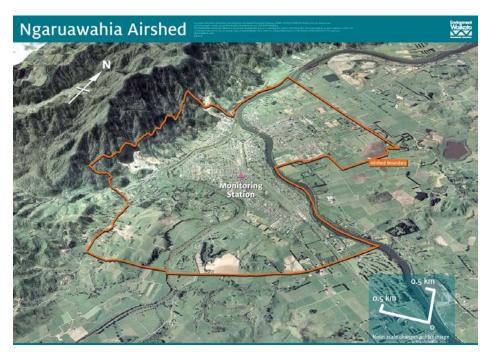


Figure 9.1: Ngaruawahia Airshed and monitoring site (Source: Environment Waikato, 2010).

Page 48 Document #: 1646544

Figure 9.2: Ngaruawahia air quality monitor (Source: Environment Waikato, 2009).

9.2 PM₁₀ Concentrations in Ngaruawahia

The maximum measured PM_{10} concentration in Ngaruawahia during 2009 was 113 $\mu g \ m^{-3}$ (24-hour average). This concentration was measured on the 25 September and coincides with the Australian dust storms. The second highest PM_{10} concentration of 43 $\mu g \ m^{-3}$ was recorded on 25 June. The NES for PM_{10} was not breached in Ngaruawahia during 2009. No exceedences of 50 $\mu g \ m^{-3}$ were measured during 2008. Air quality data for Ngaruawahia is not adjusted for gravimetric equivalency.

Daily average PM_{10} concentrations measured at the Ngaruawahia site during 2009 are shown in Figure 9.3.

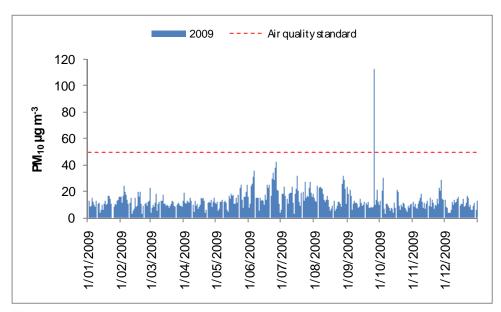


Figure 9.3: Daily winter PM₁₀ concentrations measured at the Ngaruawahia site during 2009.

Concentrations of PM_{10} relative to air quality indicator categories at Ngaruawahia for 2009 are shown in Figure 9.4. Ninety nine percent of PM_{10} concentrations were within the 'acceptable' and 'good' categories. Seasonal variations in the distribution of PM_{10} concentrations are shown in Figure 9.5. The number of days when 50 $\mu g m^{-3}$ was exceeded, the maximum concentration and the second highest concentration from 2008 to 2009 are shown in Figure 9.6.

Page 50 Document #: 1646544

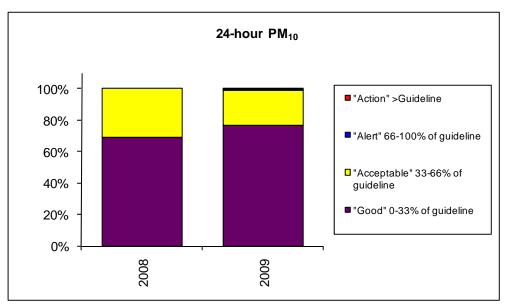


Figure 9.4: Comparison of PM₁₀ concentrations measured at the Ngaruawahia site in 2008 and 2009 air quality indicator categories.

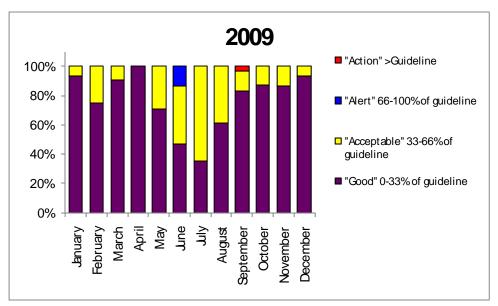


Figure 9.5: Comparison of daily PM₁₀ concentrations each month during 2009 to air quality indicator categories.

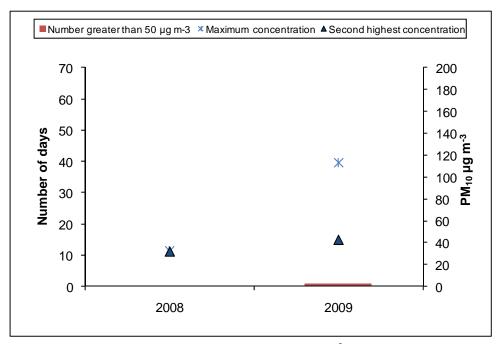


Figure 9.6: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration in 2008 and 2009.

The annual average PM_{10} concentration for Ngaruawahia for 2009 is 14 μ g m⁻³, which is the same for 2008. Summary statistics for PM_{10} monitoring results are shown in Table 9.1.

Table 9.1: Summary of PM_{10} concentrations measured at the Ngaruawahia monitoring site for 2008 and 2009.

	2008	2009
"Good" 0-33% of guideline	69%	77%
"Acceptable" 33-66% of guideline	31%	22%
"Alert" 66-100% of guideline	0%	1%
"Action" >Guideline	0%	0%
Percentage of valid data	65%	100%
Annual average (µg m ⁻³)	14	14
Measured exceedences	0	1
Annual maximum (µg m ⁻³)	32	113
Number of records	238	364

Page 52 Document #: 1646544

10 Waihi

10.1 Air Quality Monitoring in Waihi

Waihi is located 66 kilometers north west of Hamilton and is situated on the Ohinemuri River, a tributary of the Waihou River. The town occupies flat to gently undulating land. To the north and north-west are the lower hills of the Coromandel Range, and to the south-west and south are the Waitawheta hills.

Figure 10.1 shows the monitoring site at Grey Street, Waihi, around 50 meters north of the corner of Dobson Street and Grey Street. Daily concentrations of PM₁₀ have been measured since the site was established in 2008.

A Sequential Partisol Sampler is used to measure PM_{10} concentrations at Waihi (Figure 10.2).

Figure 10.1: Waihi Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

Figure 10.2: Waihi air quality monitor (Source: Environment Waikato, 2009).

10.2 PM₁₀ concentrations in Waihi

No exceedences of 50 μg m⁻³ were measured at the air quality monitoring site in Waihi during 2008. The maximum measured PM₁₀ concentration was 37 μg m⁻³ and was measured on 27 November. The highest winter time PM₁₀ concentration measured during 2009 was 33 μg m⁻³. The maximum measured PM₁₀ concentration for 2008 was 33 μg m⁻³.

Daily average PM_{10} concentrations measured at the Waihi site during 2009 are shown in Figure 10.3.

Page 54 Document #: 1646544

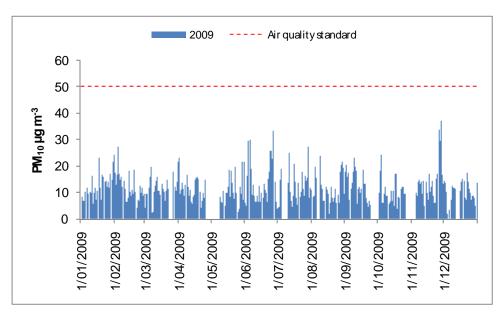


Figure 10.3: Daily winter PM_{10} concentrations measured at the Waihi site during 2009.

Figure 10.4 shows 2009 concentrations of PM_{10} relative to air quality indicator categories at Waihi. Figure 10.5 shows seasonal variations in the distribution of PM_{10} concentrations. Figure 10.6 shows the number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2008 to 2009.

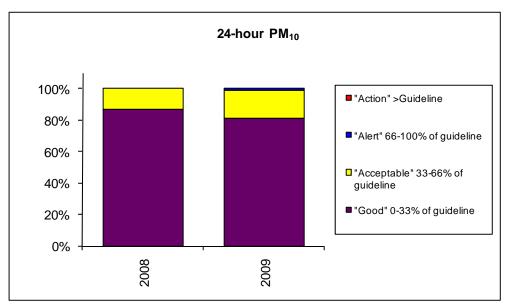


Figure 10.4: Comparison of PM_{10} concentrations measured at the Waihi site in 2008 and 2009 to air quality indicator categories.

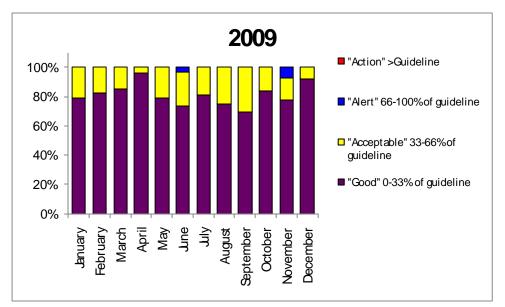


Figure 10.5: Comparison of daily PM_{10} concentrations during 2009 to air quality indicator categories.

Page 56 Document #: 1646544

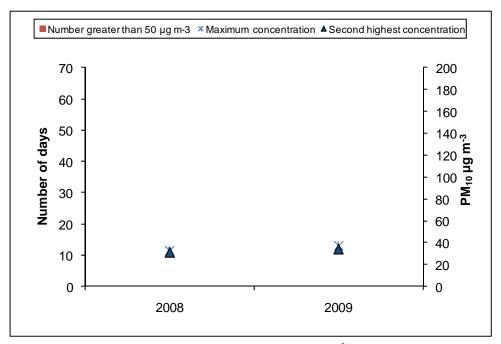


Figure 10.6: Number of days when 50 μg m⁻³ was exceeded, the maximum concentration and the second highest concentration in 2008 and 2009.

The estimated annual average PM_{10} concentration for Waihi for 2009 is 12 μg m⁻³. Table 10.1 shows the summary statistics for PM_{10} monitoring results for 2008 and 2009.

Table 10.1: Summary of PM_{10} concentrations measured at the Waihi monitoring site for 2008 and 2009.

	2008	2009
"Good" 0-33% of guideline	87%	81%
"Acceptable" 33-66% of guideline	13%	18%
"Alert" 66-100% of guideline	0%	1%
"Action" >Guideline	0%	0%
Percentage of valid data	84%	87%
Annual average (µg m ⁻³)	12	12
Measured exceedences	0	0
Annual maximum (µg m ⁻³)	32	34
Number of records	309	317

11 Turangi

11.1 Air Quality Monitoring in Turangi

Turangi is located on the banks of the Tongariro River near the southern end of Lake Taupo and is 50 kilometres south west of Taupo. Turangi has a population of around 3500 and is the second largest population centre in the Taupo District. It is near the edge of the Kaimanawa Ranges.

In April 2009 a new monitoring site was established at 16 Ohuanga Road, Turangi (Figure 11.1). Daily and hourly average PM_{10} concentrations were measured using a BAM.

Figure 11.1: Turangi Airshed and air quality monitoring site (Source: Environment Waikato, 2010).

Page 58 Document #: 1646544

Figure 11.2: Turangi air quality monitor (Source: Environment Waikato, 2010).

11.2 PM₁₀ Concentrations in Turangi

The maximum PM_{10} concentration in Turangi was 25 μg m⁻³ (24-hour average) and was recorded on 26 August. No exceedences of 50 μg m⁻³ were measured at Turangi during 2009.

Daily average PM_{10} concentrations measured at the Turangi site during 2009 are shown in Figure 11.3.

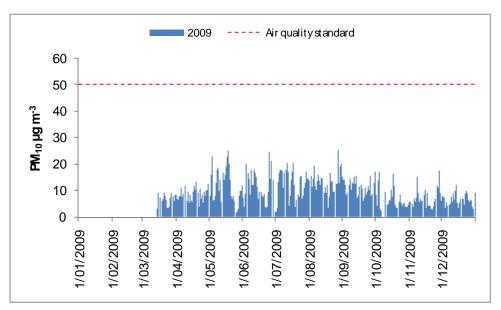


Figure 11.3: Daily winter PM_{10} concentrations measured at the Turangi site from March to December 2009.

Figure 11.4 shows concentrations of PM_{10} relative to air quality indicator categories at Turangi during 2009. Eighty eight percent of data is within the 'good' category. Seasonal variations in the distribution of PM_{10} concentrations are shown in Figure 11.5. Figure 11.6 shows the number of days when 50 μ g m⁻³ was exceeded, the maximum concentration and the second highest concentration for 2009.

Page 60 Document #: 1646544

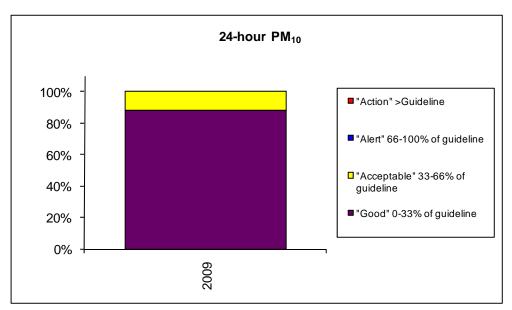


Figure 11.4: Comparison of PM_{10} concentrations measured at the Turangi site in 2009 to air quality indicator categories.

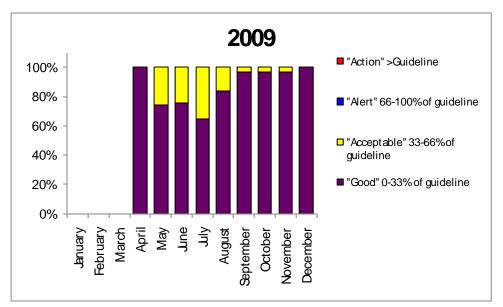


Figure 11.5: Comparison of daily PM₁₀ concentrations for 2009 to air quality indicator categories.

The annual average PM_{10} concentration for Turangi for 2009 is 9 μg m⁻³. Table 11.1 shows summary statistics for PM_{10} monitoring results.

Table 11.1: Summary of PM_{10} concentrations measured at the Turangi monitoring site for 2009.

	2009
"Good" 0-33% of guideline	88%
"Acceptable" 33-66% of guideline	12%
"Alert" 66-100% of guideline	0%
"Action" >Guideline	0%
Percentage of valid data	79%
Annual average (μg m ⁻³)	9
Measured exceedences	0
Annual maximum (µg m ⁻³)	25
Number of records	288

Page 62 Document #: 1646544

12 Summary

In 2009 Environment Waikato measured PM_{10} concentrations at air quality monitoring sites in Hamilton, Tokoroa, Taupo, Te Kuiti, Matamata, Putaruru, Ngaruawahia, Waihi and Turangi.

The NES for PM_{10} was exceeded in Hamilton, Tokoroa, Taupo, Te Kuiti and Putaruru. The maximum measured PM_{10} concentrations, number of exceedences of 50 µg m⁻³ and the annual average PM_{10} concentration are shown in Table 12.1. More than one exceedence of the 50 µg m⁻³ constitutes a breach of the NES. The annual average concentrations for each location are also shown and compare with the MfE guideline for annual averages of 20 µg m⁻³.

Table 12.1: Summary of PM₁₀ monitoring results for 2009.

	Maximum measured concentration μg m ⁻³⁻	Measured exceedences	Number of NES breaches	Annual Average
Hamilton*	101 μg m ⁻³	3	2	14 μg m ⁻³
Tokoroa*	80 μg m ⁻³	17	16	18 μg m ⁻³
Taupo	66 μg m ⁻³	7	6	17 μg m ⁻³
Te Kuiti	53 μg m ⁻³	4	3	17 μg m ⁻³
Matamata*	93 μg m ⁻³	1	0	13 μg m ⁻³
Putaruru	55 μg m ⁻³	2	1	15 μg m ⁻³
Ngaruawahia*	113 μg m ⁻³	1	0	14 μg m ⁻³
Waihi	$32~\mu g~m^{-3}$	0	0	12 μg m ⁻³
Turangi	25 μg m ⁻³	0	0	9 μg m ⁻³

 $^{^{*}}$ one non-winter exceedence caused by PM_{10} that originated in Australian dust storm.

In Hamilton, concentrations of benzene were within the 2009 guideline of 10 μg m⁻³ and the 2010 guideline of 3.6 μg m⁻³. The highest annual concentration was measured at the Greenwood Street monitoring site and was 3.2 μg m⁻³. Concentrations of toluene and xylene were well within acceptable levels.

References

Fisher, G., Rolfe, K., Kjellstrom, T., Woodward, A., Hales, S., Sturman, A., Kingham, S., Peterson, J., Shrestha, R., King, D., 2002. *Health effects due to motor vehicle air pollution in New Zealand*. Report to the Ministry of Transport.

Ministry for the Environment, 2009, *Good Practice Guide for Air Quality Monitoring and Data Management 2009*, Publication number: ME 933, Ministry for the Environment: Wellington.

Ministry for the Environment, 2002, *Ambient Air Quality Guidelines, May 2002,* Ministry for the Environment.

Ministry for the Environment, 2004, *National Environmental Standards for Air Quality,* Ministry for the Environment, Wellington.

Smith, J., 2006, Air Quality Monitoring Report 2006, Environment Waikato Report.

Smith, J. and Lee, K., 2003. Soil as a source of dust and implications for human health. *Advances in Agronomy*, Vol. 80, p 1-32.

Stevenson, C. and Narsey, H., 1999. *Benzene and Other Toxic Organics* Report prepared for the Ministry of Health.

Wilton, E and Baynes, M, 2008, *Air Quality Monitoring 2007 for Hamilton, Tokoroa, Taupo,Te Kuiti, Matamata and Putaruru*, Environment Waikato Report.

Wilton, E and Baynes, M, 2009, *Air Quality Monitoring 2008 for* Hamilton, Tokoroa, Taupo, Te Kuiti, Matamata, Putaruru, Nguaruwahia, Waihi, Environment Waikato Report.

Page 64 Document #: 1646544