Impacts of the Flood Control Scheme on Lake Waikare and Whangamarino Wetland

and Potential Mitigation Options

January 2012

Project objectives and methods

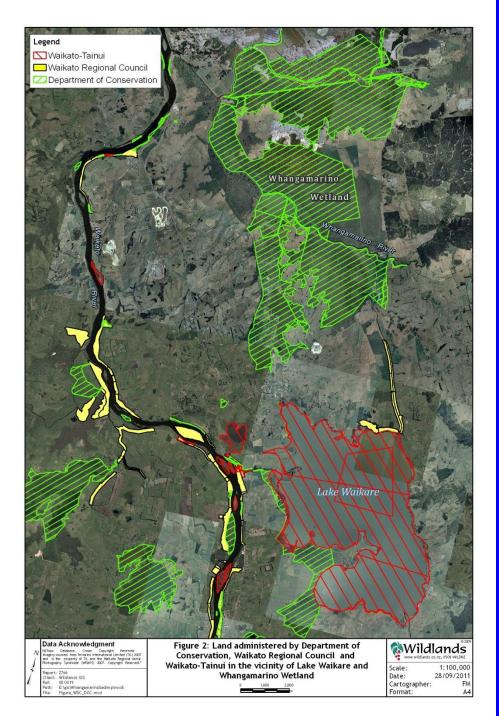
Project objectives

- Review impacts of Flood Control Scheme on Lake Waikare and Whangamarino Wetland
- Identify sediment and nutrient sources
- Identify potential options for reducing sediment inputs

Methods

- Review of existing literature, WRC datasets
 - Water quality, hydrology, biology, vegetation mapping, sediment, mitigation options
- Interviews with DOC / WRC staff
- Workshop with DOC/WRC staff

Study area


Whangamarino Wetland

- 7100 ha (originally 10, 320 ha)
- catchment area = 587 km^2
- Ramsar site, Arawai Käkäriki Wetland
- Significant conservation values
- Hypertrophic, pest and weed invasion

Lake Waikare

- 34 km², 3rd largest lake in North Island
- lake volume of 43 million m³
- max depth 1.8 m, ave depth 1.26 m
- Regional priority = 39 (of 96)
- Hypertrophic, high turbidity

Land tenure

Whangamarino Wetland DOC 4640 ha AWFG 748 ha Private ownership 1192 ha

Lake Waikare Waikato-Tainui lakebed, marginal reserves WRC 95.91 ha DOC approx. 500 ha

Direct Impacts of Flood Control Scheme

 Protection of 17,200 ha low lying land from flooding = significant economic gains for the Region

- Change in water level regime at Lake Waikare
- Re-direction of water movement

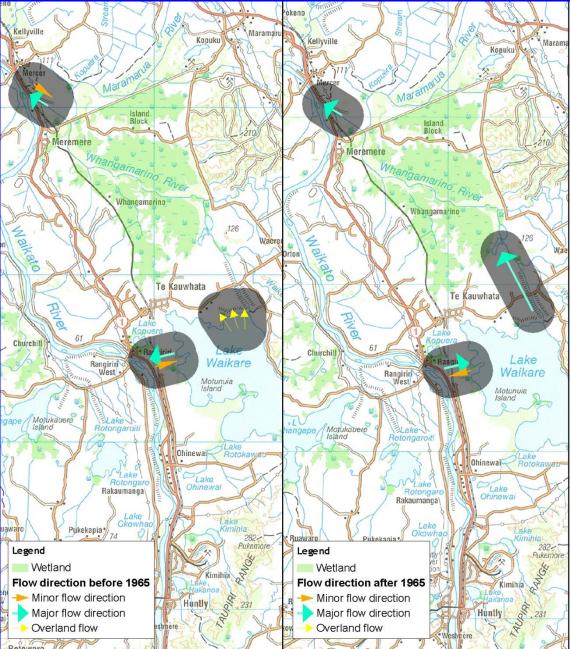
Direct Impacts of Flood Control Scheme

Change in water level regime

	1958 – 1965 PRE	2006-2011 LAST 5 YEARS
Maximum water level	8.38 m	6.02 m
Minimum water level	5.67 m	5.20 m
Average water level	6.67 m	5.54 m
Winter average (May – Oct)	6.84 m	5.55 m
Summer average (Nov – April)	6.47 m	5.54 m
Fluctuation Range	2.71 m	0.82 m

Source: Sledger, 1980. Reeves et al. 2002, WRC data

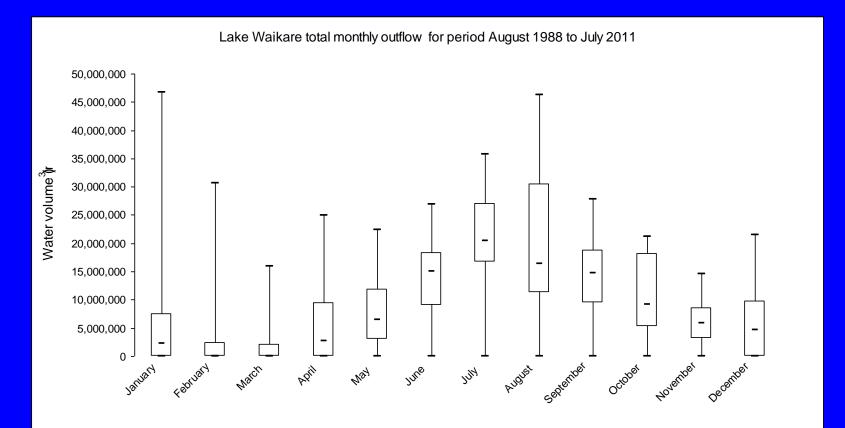
Direct Impacts of Flood Control Scheme


Re-direction of water movement

Before Flood Control Scheme

Lake Waikare > Waikato River

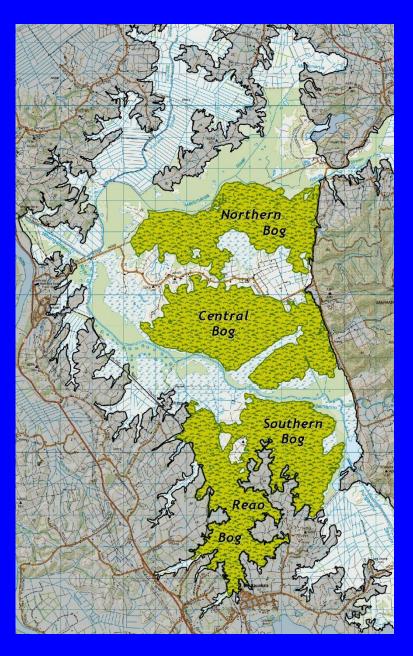
After Flood Control Scheme


Waikato River > Lake Waikare Lake Waikare > Whangamarino

Direct Impacts of Flood Control Scheme

Re-direction of water movement

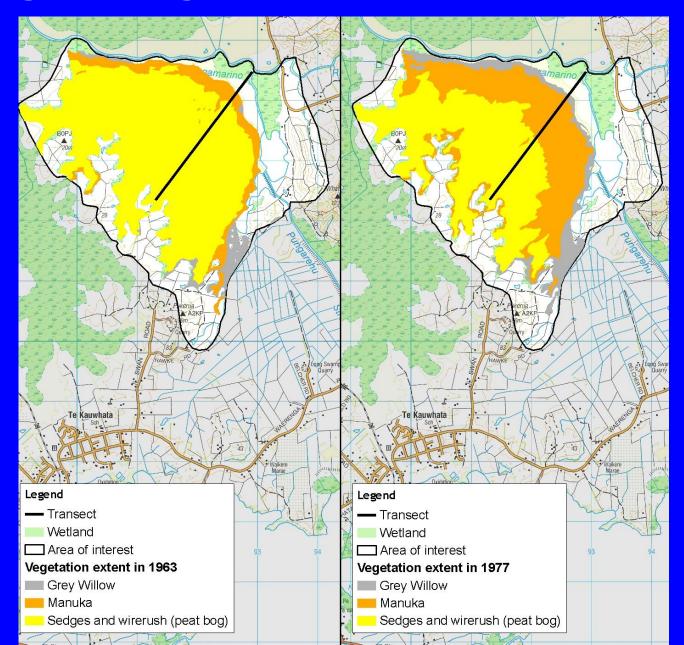
Significant increase in water volume discharged to Whangamarino Wetland ~ 117.4 million m³ per year



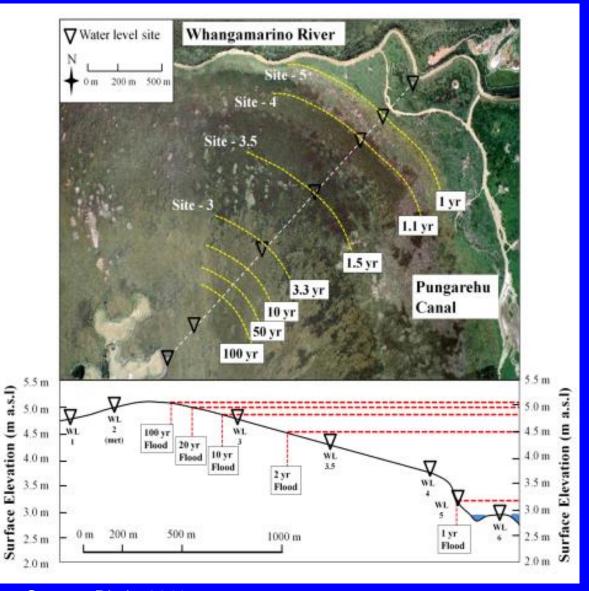
Indirect Impacts of Flood Control Scheme

- Increase in the turbidity of water in Lake Waikare
- Erosion of the shoreline at Lake Waikare
- Loss of wetland habitat at both Lake Waikare and Whangamarino Wetland (estimated 40% decline in wildlife)
- Increase in sedimentation in the Whangamarino Wetland, between 2.5 mm/y to 16.8 mm/y
- Increase in frequency and extent of flooding in the Whangamarino Wetland
- Greater risk of weed invasion

Whangamarino Wetland Peat Bogs



Peat Bogs Elevated Fed by rainwater Sensitive to ↑ nutrients


Significant conservation values Unique and rare habitat Few weeds 8 threatened plant species

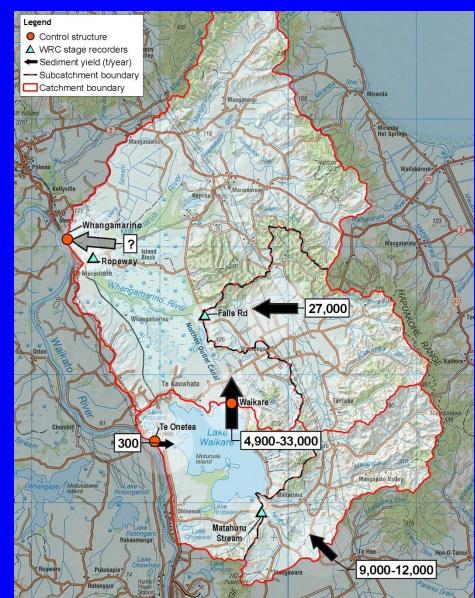
Change in vegetation cover at Southern Bog

Increase in flooding extent and frequency


Extent of manuka occurs at the flood return period of 3.3 years when water levels reach 5.17 m at Falls Rd stage

Bog would be protected if water levels at Falls Road < 4 m (currently 1.1 yr return period)

Source: Blyth. 2011


Daily flows from Lake Waikare vs daily water levels at Falls Road and rainfall

Barriers to mitigation

- Current water quality
- Pest fish
- Sediment inputs
- Lake turbidity

Mitigation options - previous investigations

Lake Waikare Steering Group

Vision: 'To restore Lake Waikare to a healthy stable ecosystem, supporting abundant plants and wildlife while providing a valuable flood storage role.'

Conclusions from previous investigations

Mitigation options that were not considered feasible

- Dredge the lake
- Flocculate lake sediments
- Drawdown lake to consolidate sediments
- Divert Matahuru Stream to Waikato River
- Increase Te Onetea Stream inflows to flush lake
- Increase populations of freshwater mussels to filter out sediments

Conclusions from previous investigations

Mitigation options with low effectiveness

- Lake margin enhancements
- Divert Matahuru Stream through a natural wetland
- Re-direct wastewater from Te Kauwhata sewage treatment plant
- Reduction of introduced fish
- Island creation to reduce wave energy
- Constructed wetlands on major drains

Mitigation options with potentially moderate effectiveness

- Increase water level fluctuation range in Lake Waikare
- Wave barriers

Current investigation of mitigation options

Broad scale

Addresses sediment inputs to Lake Waikare and Whangamarino Wetland

Types of mitigation options

- Reducing sources (i.e. catchment management practices)
- Reducing sediment in suspension within Lake Waikare
- Preventing sedimentation within Whangamarino Wetland

Mitigation options - catchment management

Range of catchment management practices

Farm design to reduce runoff to waterways Land retirement and/or reforestation Livestock exclusion Grass filter strips / riparian planting Drain management to retain sediments Sediment traps Detention ponds Enhance natural seeps/wetlands Constructed wetlands (many small or single large at bottom of catchment)

Progress to date

29.6 km Matahuru Catchment fenced and 4,211 plants in ground using WRC assisted funding

Outcome

Increase in sediment loads

Way forward

Better understanding of sediment origins / flow paths.

Match sediment reduction tools to flow paths at farm scale.

Mitigation options Reduce sediments in suspension within Lake Waikare

Increase average water levels and fluctuations

Reduce wave energy

Modelling of different lake levels to determine best option

Other benefits include increase in emergent vegetation, improvement in water quality

<u>Issues</u>

May not significantly improve turbidity

Likely to affect adjacent landowners

Wave barriers

Reduce wave energy in localised areas

Further investigation required to improve certainty of outcome

Other benefits include increase in emergent vegetation, improvement in water quality

<u>Issues</u>

Improvements likely to be localised

Mitigation options Prevent sedimentation in Whangamarino Wetland

Constructed wetland between lake and wetland

Significant reduction in sediment load possible

Other benefits include significant improvement in water quality, increase in wetland habitat, flood attenuation

<u>Issues</u>

Wetland size - 440 ha?

Land purchase would be required

Confine Waikare control gate outflows

Option 1: Timing and / or reduction of outflows

Option 2: Stopbanking or bunding

Other benefits include flood attenuation, improvement in water quality

<u>Issues</u>

Increase water levels in Lake Waikare

Stopbanking / bunding will affect hydrology, biology and recreational values of adjacent wetland

Evaluation of mitigation options

	Evaluation criteria					Other considerations			
•Mitigation option	Effectiveness (0-9)	Certainty of outcome (0-8)	Cost (0-6)	Other benefits (0-5)	Total (0-28)	Acceptable to DOC	Does not impact flood control scheme	Will not require action on private land	
Catchment management - targeted farm-scale actions	5	2	4*	4	15	\checkmark	V	x	
Catchment management - constructed wetlands at bottom of catchment	5	2	0	4	11	\checkmark	V	x	
Increase lake levels / fluctuation range in Lake Waikare	3*	3	4	3*	11	\checkmark	х	V	
Wave barriers in Lake Waikare	2*	3	4	2	11	\checkmark	√	\checkmark	
Constructed wetland between Lake Waikare and Whangamarino Wetland	3*	7	0	4	14	\checkmark	?	x	
Confine Waikare control gate outflows by controlling timing and volume of outflows	2	6	4	2	14	\checkmark	Х	V	
Confine Waikare control gate outflows by stopbanking / bunding	2*	5	4	2	13	Х	?	?	

* Low confidence in score.

Mitigation options Conclusions

Combination of mitigation options required All options have significant drawbacks Re-evaluate objectives – set specific targets Fill information gaps of best options

