Christopher Carter

Submission to Healthy Rivers Committee

What an 80 year timeline means...

• I'm going to teach my kid to read... in 80 years.

• I'm going to give up smoking.... in 80 years.

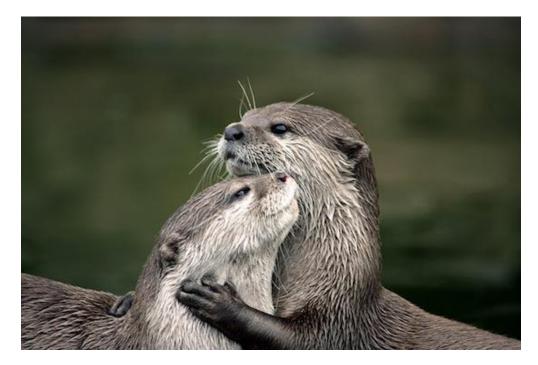
• I'm going to the moon... in 80 years.

80 years to clean up our rivers is in fact...

The timeline we set when we don't want a timeline

Let's get real – do this within 20 years The tale of the Thames in London

- In 1957, the Natural History Museum declared the Thames biologically dead. News reports from that era describe it as a vast, foul-smelling drain.
- 1974 80 species of fish returned first salmon spotted
- What about today?


The Thames Today

A Thames currently fit for swimming

By Simon Griffiths • Publisher • 25th July 2018 ♥@outdoor_swimmer

These critters have returned

Along with 125 fish species, seals and abundant birdlife

Anything less than 80 years is 'too dear'? Consider the cost of doing nothing...

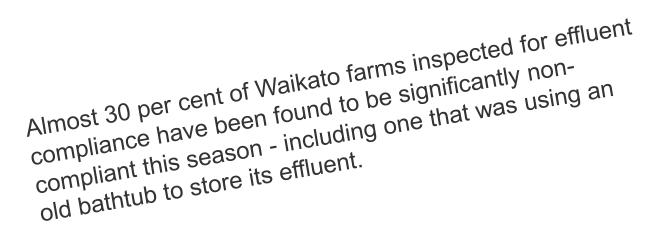
World champ rowers sickened by e-coli outbreak at Karapiro. Dozens hospitalised, world champs cancelled.

Japanese TV expose on our filthy rivers. Tourism down by 25%

E-coli outbreak linked to factory discharge, worse than Havelock North. China stops all dairy imports at border. Honeymooning German you-tuber hospitalised after swim in '100% pure NZ' river.

The benefits of clean waterways

An extra 100,000 tourists visiting the pristine Waikato region spending \$200 per day for just 3 days would yield \$60m per year.


- Reduced sickness from waterborne diseases
- Restoration of traditional food sources
- Increased recreational use of waterways
- We walk the '100% Pure' talk
- Less pollution risk to our tourism and farming industries

Nitrogen Modelling

- 'Fixes' the whole countryside
- Very wasteful of resources, expensive for all parties
- Grandparenting lets big polluters continue polluting
- The real issue needs targeted clean-up
- It penalizes good practitioners and low-N farms
- We already have pollution controls, let's enforce them

How does Nitrogen modelling fix this?

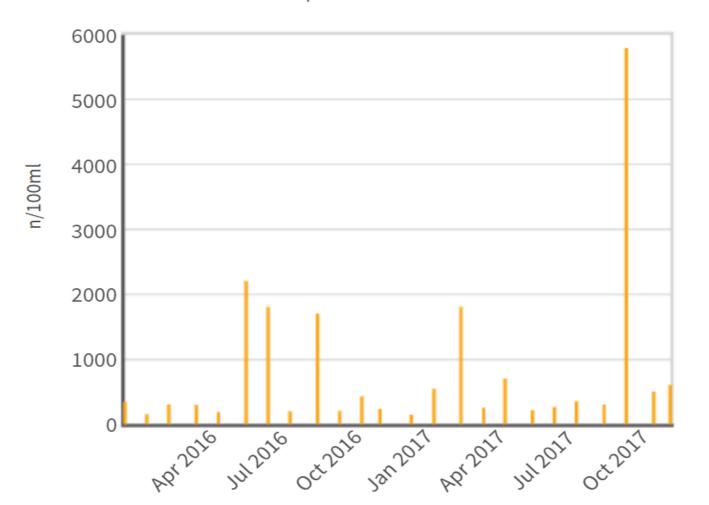
companies are broke

The WRC farm services team has inspected 239 "high risk" farms since July 1. Of the high-risk farms inspected, 34 had upgraded their effluent operations. However, 31 per cent were found to be significantly non-compliant, including some who had been non-compliant the previous season.

Waikato farming company fined \$116k at Hamilton District Court

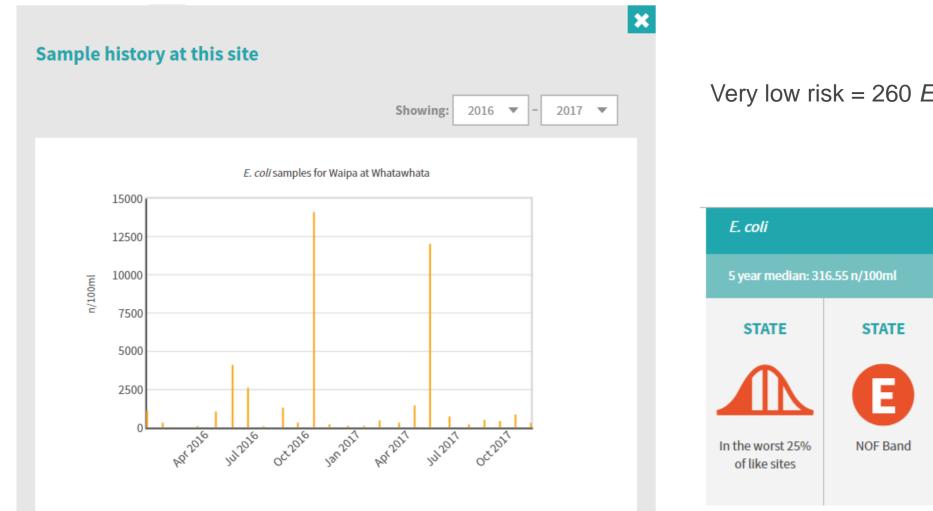
Farm owners lose appeal against \$45k effluent fine

Fine of \$225,000 for dirty dairying will go unpaid because H & S Chisholm Farms Limited has been convicted and fined \$57,375 for two discharges of dairy effluent from its South Waikato farm in mid-2017.


Table 1: Water quality trends in the Waikato River between 1993 and 2017 (based on methods from Waikato Regional Council's Technical Report 2013/20.)

\odot	Important improvement	Waikato river sampling sites									
() () () () () () () () () () () () () (Slight improvement Uncertain Slight deterioration Important deterioration	Taupo	Ohaaki	Ohakuri	Whakamaru	Waipapa	Narrows	Horotiu	Huntly	Mercer	Tuakau
	Temperature	$\overline{\mathbf{S}}$	\odot	$\overline{\mathbf{S}}$	-	_	_	—	—	\odot	\odot
	Dissolved oxygen	-	\odot	-	-	8	$\overline{\mathbf{S}}$	$\overline{\mathbf{S}}$	-	\otimes	$\overline{\mathbf{S}}$
	Visual clarity	nd	\otimes	$\overline{\mathbf{S}}$	$\overline{\mathbf{S}}$	\otimes	\odot	\odot	_	nd	\otimes
	Turbidity	\otimes	8	8	-	—	\odot	—	—	8	\otimes
	Arsenic	\otimes	\odot	-	_	_	\odot	\odot	\odot	\odot	\odot
	Ammonia	—	—	—	—	-	-	\odot	\odot	—	-
	Total nitrogen	—	\otimes	\otimes	\otimes	8	\otimes	\otimes	\otimes	\otimes	\otimes
	Total phosphorus	\odot	\odot	-	-	-	\odot	\odot	\odot	\odot	\odot
	Chlorophyll a	-	_	—	nd	_	\odot	\odot	\odot	\odot	\odot
	E. coli	-	\odot	_	8	-	_	-	_	-	-

Nitrogen Modelling won't stop Te Waihou going from pristine


...to Unclean in a few kilometres

E. coli samples for Waihou River at Okauia

Very low risk = 260 *E.coli*/100 mL

The Waipa River – ditto, no cities to blame here.

Very low risk = 260 *E.coli*/100 mL

?

TREND

Likely Improving

More intensive 'targeted monitoring'

- There is huge gaps in our water quality data, leading to an inability or unwillingness to tackle the root problem
- We need more frequent water quality monitoring, publicly shared
- This will identify root sources of pollution
- Doesn't penalize farms who are already compliant and following good practices
- Tackles the issue at the source, not the symptoms downstream
- Paired with a contestable fund for clean-ups would be much cheaper than trying to 'fix' the whole countryside.

The no.1 benefit of a clean river... for our kids

