PC1 Submission

Mark Harris, 743 Rotowaro Rd, RD1, Huntly

Presentation Outline

- 1. Overview of farming business and dependent families
- 2. Impact of PC1 on us
- 3. Review of key aspects of PC1 and desired changes

Harris Family Farm

- 38 ha in 1938. Growth by acquisition over 3 generations
- Dairy Farm now 213 ha
- 10% in trees
- All 0.3m deep water ways fenced
- Sediment traps in many gullys -Fenced

Harris Family Farm

- Low producing/low stocking rate – dry summers limiting productivity
- Not sustainable economically for next generation
- Autumn calving transition beginning 2016/17 – lower feed demand in summer – more days in milk
- Requires more maize/less turnips
- Feedpad/Standoff facilities & bunkers built \$200k
- 3 months effluent storage \$30k

Harris Family Farm

- FEP in place since Oct 2018
- All key water ways fenced
- On going work programme

Harris Family Farm

- Ginn road drystock block
 62 ha purchased 2011
- Ex dairy farm cowshed still there
- 0.3m deep streams fenced
- Maize grown for home farm

Families supported

Dairy Farm PC1 Impact

• Production History

09/10	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19
114	128	140	109	118	106	121	126	150	180
			drought	drought	theileria	\$4 payout	25/75 sp/au	50/50 sp/au	65/35 sp/au
-(\$78k)	-(\$10k)	-(\$61k)	-(\$62k)	(-\$49k)	-(\$76k)	-(\$30k)	\$12k	\$115k	Est \$100k+

- N ref set in low production years
- New rules mean future potential limited
- Credit for significant environmental work prior to PC1 absorbed/not recognised (retired land - 10% trees, multiple sediment traps etc)
- Potentially 1 family will have to leave business
- Investment \$100k PA for 10 years wasted
- Next generation denied dairy farming option exit via large lifestyle block subdivision required

Drystock Block PC1 impact

- Ideally added to dairy farm next door in future
- Land value as dairy \$25k/ha
- Land value as dry stock \$18k/ha
- PC1 impact \$7k x 62 ha = \$432k loss in capital value

N Reference point

- Profiles range of potential discharges useful for planning and identifying farms investment in would possibly yield best improvement
- × Uses model for regulation not designed for that purpose
- × Locks In reference year productivity stifles growth history shows farms who stay still eventually go out of business
- × 2 farms on the same LUC and operation type but farmed differently, have different limits applied
- × Massive distortion of capital value structure post PC1 implementation 2 farms above currently similar value, post 30% drop possible/likely
- × Only 1 contaminant to be regulated by model-based quantification P and sediment much more important for water quality. Yet N limits restrict productive capacity and wealth generation for community (P 4.3 x more important than N for river. N determines our wealth generation for community)
- × Cost 1k to 2k per farm \$6-12M, no environmental gain

N Reference point – Option 1

- Use only to determine 75 percentile farms and profile catchment
- Use FEP as a means to ensure farms achieve best practice. N ref point not needed for regulation

Preferred

N Reference point - Option 2

- Benchmark representative farms properly industry bodies can do
- Use to identify best practice and build a model of catchment
- Roll out min standards through requirements in FEP's in future

Land Use Change Requires Resource Consent

- ✓ Provides a means to ensure new use fits with land use suitability
- × Link to N ref point means land is unlikely to be developed
- × Farms must become more productive to remain viable
- × Severely penalises low N Ref point properties, even where the land is highly suitable for new intense usage, e.g. market gardening

Land Use Change: Suggestion

• Develop land use suitability guide. Change land use if suitable and farmed to best practice via FEP

Fencing Water Ways: Set backs

- ✓On more intensive grazing properties maintains integrity of stream banks, reduces sediment/P run off and keeps cattle out of water
- Set back limit 3m overly restrictive takes productive land out of service and reduces productivity. Research shows 70% of sediment capture is achieved with 1m setback

Fencing Water Ways

- Minimum set back adjusted to 1 m
- Cultivation setback on land 15° to 25° 2m (from 5)

Figure 1. Buffer width and sediment trapping efficiency.

PC1 Impact on Our Business in Current Form

Summary of Changes Requested

- Drop N Ref point as means of regulation
 - Compromise:
 - Nref to profile catchment/ identify 75% ile farms for prioritisation
 - FEP to implement best N management practices
 - support <u>original</u> S42A proposal

Or preferred as lower cost for community and more accurate

- Benchmark LU vs soil type/contour for monitor farms (say 200 through catchment)
- Devise limits on practice over time and implement via FEP
- Land Use Change
 - Define acceptable Land Use Classification system based on production/unit discharge
 - Allow Land use change to acceptable usages based on topography/soil type, with suitable FEP and monitoring programme
- Set Backs
 - Pasture 1m (from 3m)
 - Cultivated land 2m (from 5m)