

Tui Mine: Post Remediation Ecological Monitoring 2015

Waikato Regional Council

solutions for your environment

Tui Mine: Post Remediation Ecological Monitoring 2015

Prepared for

Waikato Regional Council

• March 2016

PATTLE DELAMORE PARTNERS LTD Level 4, PDP House 235 Broadway, Newmarket, Auckland 1023 PO Box 9528, Auckland 1149, New Zealand

Tel +64 9 523 6900 Fax +64 9 523 6901 Website <u>http://www.pdp.co.nz</u>

pop

WAIKATO REGIONAL COUNCIL - TUI MINE: POST REMEDIATION ECOLOGICAL MONITORING 2015

i

Quality Control Sheet

TITLE	Tui Mine: Post Remediation Ecological Monitoring 2015
CLIENT	Waikato Regional Council
VERSION	Final
ISSUE DATE	18 March 2016
JOB REFERENCE	A02277813
SOURCE FILE(S)	A02277813R001.docx
DOCUMENT CONT	RIBUTORS
Prepared by	
SIGNATURE	4
Patr	ick Lees
Reviewed by	all have by
11	y Beech Keith Delamore
ivi a r	y beech Keith Delamore

Limitations:

This report has been prepared by PDP on the specific instructions of Waikato Regional Council for the limited purposes described in the report. PDP accepts no liability if the report is used for a different purpose or if it is used or relied on by any other person. Any such use or reliance will be solely at their own risk.

Executive Summary

Waikato Regional Council (WRC) has commissioned Pattle Delamore Partners Ltd (PDP) to undertake environmental monitoring pre and post mine remediation of Tui Mine, Te Aroha in the Tui and Tunakohoia Streams. This report presents results from ecological monitoring in 2015, six years on from the baseline study conducted by Coffey (2009) and 2 years on from the post-remediation study conducted by PDP (2013).

Macroinvertebrate community results for the un-impacted (control) sites above the mine discharge (Tui Stream and Tunakohoia Stream south branch) were similar to those sites for the baseline 2009 survey and the post remediation study in 2013. Both un-impacted sites scored in the representative macroinvertebrate community index category 'excellent', indicating a healthy aquatic macroinvertebrate community. The 2015 results showed that a continued improvement in macroinvertebrate health at the two impacted sites (Tui Stream and Tunakohoia Stream north branch downstream of discharge) compared to the 2009 baseline study (Coffey 2009). The macroinvertebrate community in 2009 was virtually absent, whereas in 2013 and 2015, taxonomic richness and abundance have increased considerably, scoring in the "good" and "excellent" categories for macroinvertebrate community index.

Based upon the findings of ecological monitoring conducted in 2015, macroinvertebrate communities at the impacted sites, that receive mine discharges (Tui Stream and Tunakohoia Stream north branch) are still affected by past and/or present activities at the Tui Mine, but to a lesser extent than recorded in 2009. There has been an overall improvement observed at both the impacted and un-impacted sites, represented by increased taxa richness, diversity, abundance and improved community composition. The 2015 habitat monitoring results show that the in-stream, riparian and bankside habitat is consistent with results from 2013.

Table of Contents

SECTION		P A G E
Executive	Summary	ii
1.0	Overview	1
2.0	Introduction	1
3.0	Methods	1
3.1	Ecological Sampling Procedures	1
3.2	Statistical Analysis of the Data	3
4.0	Results and Discussion	4
4.1	Macroinvertebrate Health and Indices	4
4.2	Invertebrate Richness and Abundance	5
4.3	Acid Mine Drainage Index	6
4.4	Community Composition	6
5.0	Summary	9
6.0	Recommendations	10
7.0	References	10

Table of Tables

Table 1: Tui Baseline Monitoring Sites	2
Table 2: Macroinvertebrate Metrics	3
Table 3: Summary Table: Average Macroinvertebrate Results	8

Appendices

Appendix A: Sample Locations

Appendix B: Macroinvertebrate Composition and Metrics and Habitat Field Assessment Forms

Appendix C: Figures

1

1.0 Overview

Pattle Delamore Partners Limited (PDP) was commissioned by Waikato Regional Council (WRC) to undertake progress monitoring of the Tui and Tunakohoia Streams in the vicinity of the Tui mine (Figure 1) post remediation.

Previous water quality (PDP, 2010; PDP, 2012; PDP, 2014) and ecology (Coffey, 2009; PDP, 2013) reports have noted:

- Good water quality and ecosystem health in the Tui stream and the southern branch of the Tunakohoia Stream above the discharge from the mine.
- Water highly contaminated with heavy metals below the mine discharge in Tui stream and in the northern branch of the Tunakohoia Stream. Instream ecological health was low in these areas, and was unable to support a significant or diverse macroinvertebrate community.
- However, there has been an overall improvement in macroinvertebrate diversity, abundance and community composition at both the impacted and un-impacted sites

The current work undertaken by PDP has included the analysis and interpretation of ecosystem health from the collection of macroinvertebrates, water quality, and habitat assessment data.

This report presents the results of the ecological monitoring carried out in October 2015.

2.0 Introduction

Freshwater macroinvertebrates are a widely used biological indicator of stream health as they can adequately reflect several anthropological and environmental pressures such as pollution, hydrological and geomorphological changes and are also widely distributed and provide relatively cost effective results (Stark, 1998; Boothroyd and Stark, 2000; Stark and Maxted, 2007; and Álvarez-Cabria *et al.*, 2010). However, in systems receiving Acid Mine Drainage (AMD; also known as acid rock drainage) such as from the Tui Mine, the chemical characteristics of the mine waters are of overriding importance and can strongly influence macroinvertebrate community composition (Harding, 2005; Lefcort *et al.*, 2010).

3.0 Methods

3.1 Ecological Sampling Procedures

Ecological monitoring was undertaken within the Tunakohoia and Tui Streams at four sampling locations: un-impacted Tui Stream (upstream of tailings discharge; SW12), impacted Tui Stream (downstream of discharge; SW13), un-impacted

Tunakohoia Stream (south branch above north branch confluence; SW8) and impacted Tunakohoia Stream (north branch below discharge; SW7) (Table 1; Appendix A; Figure 1).

Table 1:	Table 1: Tui Baseline Monitoring Sites											
Site ID	Site Name	State	Site Description	Monitoring								
SW12	Tui Stream	Un-impacted	Tui Stream, upstream of tailings discharge.	Ecology & Water Quality								
SW13	Tui Stream	Impacted	Tui Stream, downstream of tailings discharge upstream of ford and culverts.	Ecology & Water Quality								
SW8	Tunakohoia Stream	Un-impacted	Tunakohoia Stream south branch, upstream of north branch confluence, town water supply inlet.	Ecology & Water Quality								
SW7	Tunakohoia Stream	Impacted	Tunakohoia Stream north branch, upstream of south branch confluence and downstream of tailings dam.	Ecology & Water Quality								

Ecological and water quality sampling was undertaken in October 2015. For consistency and comparison of results, ecosystem health sampling was carried out in accordance with sampling locations and methodologies used by Coffey (2009) and PDP (2013).

In brief, macroinvertebrates were collected semi-quantitatively using a longhandled D-net (kick net) with a 500 *u*m mesh net. An area of approximately 3 m² was sampled and the proportion of habitat types sampled was recorded on field assessment cover forms. Four replicates were collected at each site to allow for the detection of statistically significant differences in macroinvertebrates. The macroinvertebrate samples were preserved in the field for later processing and analysis. Sampling was conducted in accordance with established guidelines (e.g., Stark *et al*, 2001; Collier and Kelly, 2005).

Macroinvertebrate samples were sent to Stark Environmental Limited for identification, where a 200 individual fixed count with a scan for rare taxa for each macroinvertebrate sample was undertaken (as per Stark *et al.*, 2001; Collier and Kelly, 2005).

Water quality parameters (temperature, conductivity, dissolved oxygen and pH) were measured at each ecological monitoring site using calibrated field meters. This information will be presented in an accompanying water quality report.

Habitat assessments were conducted at each of the four sites using field habitat assessment forms for hard bottom streams (Collier and Kelly 2005). Habitat scores were very similar to that of 2009 and 2013. However, the 2015 results show that there appeared to be less visible periphyton at all sites sampled. Given there have been no notable changes, the habitat data has not been presented in this report. For reference to habitat assessments see Coffey (2009).

3.2 Statistical Analysis of the Data

00

A variety of individual metrics were used to assess the relative health of the macroinvertebrate communities at each site. The total number of invertebrates, taxonomic richness, Macroinvertebrate Community Index (MCI), Quantitative Macroinvertebrate Community Index (QMCI), percent of Ephemeroptera, Plecoptera, Trichoptera (%EPT), and Acid Mine Drainage Index (AMDI) were assessed for each site (Table 2).

T-tests were performed to test whether there were any significant differences (P = <0.05) between the un-impacted and impacted site indices data and between the 2013 and 2015 indices data. Species were also reduced to broad taxonomic groups for the assessment of relative abundances of the taxa groups at each site (presented as % bar graph; Appendix C; Figure 3).

Table 2: I	Macroinvertebrate Metrics
Metric	Definition
Taxa Richness	Indicates the number of species present. Streams supporting high numbers of taxa generally indicate healthy communities.
MCI	This index allocates macroinvertebrate taxa a score between 1 (pollution tolerant) and 10 (pollution intolerant) depending on each taxon's tolerance to organic enrichment and is based on presence/absence data. Interpretation of MCI values as follows: >120 = Excellent, 100-120 = Good, 80-100 = Fair and <80 = poor.
QMCI	This index allocates macroinvertebrate taxa a score between 1 (pollution tolerant) and 10 (pollution intolerant) depending on each taxon's tolerance to organic enrichment. These scores are multiplied by the abundance of the taxa and divided by the total abundance then combined to give an overall QMCI value. Stark (1998) provided an interpretation of QMCI values as follows: >6 = clean water (Excellent), 5-6 =doubtful quality of possible mild degradation (Good), 5-4 = probable moderate degradation (Fair) and <4 = probable severe degradation (Poor).

Table 2:	Macroinvertebrate Metrics
Metric	Definition
%EPT	Measures the number of sensitive taxa belonging to Ephemeroptera, Plecoptera and Trichoptera orders as a percent of total taxa identified (excluding the pollution tolerant genera <i>Oxyethiria</i> and <i>Paroxyethira</i> ¹).
AMDI	The Acid Mine Drainage Index (AMDI) is similar to MCI, but is calibrated for water with AMD. AMDI has been developed by associating water chemistry and benthic invertebrate community data (Gray and Harding 2012) to develop taxa specific indicator scores. AMD Index is defined by 3 categories, <20 = impacted by AMD, 20-40 = moderately impacted by AMD and >40 = un-impacted by AMD.

4.0 **Results and Discussion**

The presence and relative abundance of macroinvertebrates as measured at the sites, together with calculated metrics of macroinvertebrate community structure are provided in Appendix B.

4.1 Macroinvertebrate Health and Indices

Macroinvertebrate health results from both un-impacted sites (SW12 and SW8) were similar to that of the baseline study by Coffey (2009) and post remediation monitoring by PDP (2013), scoring "excellent" MCI and QMCI values (Table 3). This indicates that both the un-impacted Tui and Tunakohoia streams have high in-stream habitat quality and water quality that allows for a diverse aquatic macroinvertebrate community (Figure 2 and 3 Appendix C).

4.1.1 Tunakohoia Stream

The calculated MCI scores from the un-impacted Tunakohoia Stream Site (SW8) were significantly higher than the impacted Tunakohoia Stream site (SW7) in 2015 (p = 0.003). There were no significant differences between the 2015 and 2013 Tunakohoia Stream MCI scores at both the un-impacted site (SW8) and the impacted site (SW7). The Tunakohoia Stream QMCI values were not significantly higher at SW8 than at SW7. There were no significant differences in QMCI values between the 2015 and 2013 results from both sites on the Tunakohoia Stream.

¹ Both Oxyethira and Paraoxyethira are common Hydroptilidae caddisfly taxa that are able to withstand habitats with increased nutrient enrichment, algae bio mass and low shade. Their removal from the percent EPT taxa calculation enables this metric to represent the proportion of EPT taxa that are sensitive to pollution and degraded environments.

4.1.2 Tui Stream

Calculated MCI scores from Tui Stream were not significantly different between the un-impacted site (SW12) and the impacted site (SW13) in 2015. There were no significant differences between the 2015 and 2013 Tui Stream MCI scores at both the un-impacted (SW12) and impacted sites (SW13). The Tui Stream QMCI values were not significantly higher at SW12 than at SW13. There were no significant differences in QMCI values between 2015 and 2013 results from both sites on the Tui Stream. However, there was a reduction in the average QMCI value at the impacted Tui Stream site (SW13) from 2013 to 2015 (Table 3). The decrease in average QMCI value can be attributed to one replicate sample (SW13 Replicate No. 2 QMCI = 5 (Appendix B)) only having one identified net spinning caddisfly *Orthopsyche* (MCI value = 9), while the other three replicates ranged from 20 – 67 *Orthopsyche* individuals identified.

The current MCI scores generally indicate that the in-stream habitat quality for aquatic macroinvertebrates is high across all sites, however mayflies (Ephemeroptera) continue to be absent from both the impacted sites (Appendix B). The likely reason for absence of mayflies at the impacted sites is not yet known.

The 2015 results were an improvement on the 2009 results (Coffey, 2009). MCI and QMCI health scores at the impacted site in Tui Stream continued to be classed as 'excellent' in 2015. The impacted site in the Tunakohoia Stream continued to be classed as 'good' for MCI and 'excellent' for QMCI in 2015 (Table 3).

The %EPT values obtained from the 2015 sampling were not significantly different between the impacted and un-impacted sites in Tui Stream. However, %EPT values were significantly different between the impacted and un-impacted sites on the Tunakohoia Stream (p = 0.0013,). Likewise, only the 2015 impacted Tunakohoia Stream %EPT values were significantly different from the 2013 results (p = 0.027).

4.2 Invertebrate Richness and Abundance

Average taxonomic richness at the two un-impacted sites continued to be similar to previous sampling rounds (Table 3). Average taxonomic richness either increased (SW13) or remained stable (SW7) at both impacted sites in 2015 compared with 2009 and 2013 results. Taxonomic richness was significantly higher at the un-impacted sites compared to the impacted sites in the 2015 monitoring, in the Tui Stream (p = 0.007) and the Tunakohoia Stream (p = 0.002).

Average macroinvertebrate abundance at both un-impacted sites was high. Macroinvertebrate abundance at Tunakohoia Stream was similar to that observed in 2009, while 2015 macroinvertebrate abundance at the un-impacted Tui Stream site was less than both the 2009 and 2013 results. The Tui Stream un-

impacted site site generally showed higher abundances than the un-impacted site on the Tunakohoia Stream (Table 3).

Abundance at the two impacted sites in 2015 was greater than that observed in the 2009 sampling (Table 3), but lower than that observed in 2013 (95 to 80 individuals at the impacted site on Tui Stream and 38 to 29 individuals at the impacted site on Tunakohoia Stream). Although abundance has increased since remediation, the abundances are still low and less than 50% of the un-impacted site.

4.3 Acid Mine Drainage Index

Macroinvertebrate AMDI results from 2015 indicate that the two un-impacted sites are un-impacted by AMD, as expected.

The impacted Tunakohoia Stream site (SW7) had a similar AMDI score to 2013, while the impacted Tui Stream site (SW13) increased to 42 (Table 3). An AMDI score of 42 indicates that the impacted Tui Stream site (SW13) is just within the boundaries of being classed as un-impacted (i.e., AMDI score > 40 = un-impacted). It is important to note that this is the first sample to indicate that this site has "recovered" from the effects of AMD. But caution should be used as there is inherent variability in macroinvertebrate community composition at this site. The site won't be considered to have "recovered" until AMDI tolerance scores are +/- 10% of the control sites consistently.

AMDI scores were significantly different at the un-impacted sites compared to the impacted sites in Tui Stream (p = 0.006) and in the Tunakohoia Stream (p = 0.005).

4.4 Community Composition

Caddisfly (Trichoptera), especially from the family Hydropsyche (*Orthopsyche* and *Aoteapsyche*) appear to be the dominant taxa across all sites, only the unimpacted Tunakohoia Stream site appeared to have a lower composition of caddisfly larva (Figure 3, Appendix C). Mayfly (Ephemeroptera) and stonefly (Plecoptera) larvae were also abundant at the un-impacted sites and made up between 10-30% of the community (Figure 3; Appendix C). Greater diversity was observed at the two un-impacted sites, represented by increased taxonomic richness and high abundances of each taxa. Freshwater Koura were observed during sampling at the un-impacted site on Tunakohoia Stream (SW8), further suggesting good ecosystem health and aquatic diversity in the upper reaches unaffected by the mine discharge.

Although there have been improvements compared with the situation reported in Coffey (2009), the macroinvertebrate communities at the two impacted sites are generally dominated by 1 macroinvertebrate order in 2015. Caddisflies made up 49% of the sample from the impacted site on Tui Stream and 50% of the

sample at the impacted Tunakohoia Stream site. Secondarily Diptera (or true flies) were prominently identified at the impacted Tunakohoia Stream site in 2015 (Appendix C; Figure 3). Communities dominated by a few taxa generally indicates a level of environmental stress.

Of interest is the increase in abundance of Dipteran taxa at both the impacted sites between 2013 and 2015 (Appendix C; Figure 3). This can be attributed to an increase in the occurrence of *Aphrophila spp* (a species of crane fly). *Aphrophila spp* has a high AMD value meaning that it is susceptible to effects associated with AMD, and is therefore not usually a common species within streams with such conditions. *Aphrophila spp* were identified in low numbers in 2013, and have become abundant within impacted samples in 2015 (22 individuals identified in Tunakohoia Stream (SW7) and 86 individuals identified in Tui Stream (SW13)).

Table 3: S	ummary Tal	ole: Average	Macroinvert	ebrate Resu	lts							
		SW12 SW13						SW8			SW7	
	Unim	pacted: Tui St	ream	Imp	acted: Tui Stre	eam	Unimpact	ed: Tunakoho	ia Stream	Impacte	ed: Tunakohoia	Stream
	2009	2013	2015	2009	2013	2015	2009	2013	2015	2009	2013	2015
Taxa Richness	23 (1.15)	23 (4.27)	21 (3.37)	2 (0.5)	7 (1.26)	11(1.71)	19 (0.5)	19 (4.19)	20 (2.22)	2 (1.29)	8 (0.5)	8 (2.63)
# Inverts	202 (1.63)	195 (43.9)	167 (62.9)	2 (0.82)	95 (32.6)	80 (30.5)	136 (0.82)	140 (64.1)	144 (39.3)	2 (1.29)	38 (14.1)	29 (28.6)
MCI	142 (2.15)	145 (5.35)	145 (5.92)	n/a	131 (4.19)	133 (13.3)	136 (3.5)	149 (10.8)	145 (6.13)	n/a	110 (13.0)	117 (3.32)
QMCI	6 (0.11)	8 (0)	8 (0.82)	n/a	8 (0.5)	6 (0.96)	6 (0.17)	8 (0.58)	7 (0.5)	n/a	6 (0.5)	7 (0.96)
%EPT taxa	n/a	61 (4.57)	58 (4.20)	n/a	61 (22.1)	51 (6.70)	n/a	69 (6.45)	66 (6.18)	n/a	29 (13.5)	45 (5.74)
AMDI	n/a	64 (4.43)	64 (4.80)	n/a	36 (3.87)	42 (11.5)	n/a	75 (5.97)	73 (5.10)	n/a	36 (9.5)	35 (7.93)

Notes:

a) n/a – indices not calculated due to insufficient number of species present within sample.

b) Values in parentheses indicate the standard deviation.

Key: Stream Health Score Card									
MCI <80	Poor	QMCI < 4.00							
MCI 80-100	Fair	QMCI 4.00 - 5.00							
MCI 100-120	Good	QMCI 5.00 - 6.00							
MCI>120	Excellent	QMCI > 6.00							

Key: Acid Mine Drainage Index

AMDI < 20 = impacted by acid mine drainage AMDI 20 - 40 = moderately impact by AMD

AMDI > 40 = unimpacted

8

5.0 Summary

Ecological monitoring was undertaken within the Tui and Tunakohoia Streams at four sampling locations, un-impacted Tui Stream (upstream of tailings discharge; SW12), impacted Tui Stream (downstream of discharge; SW13), un-impacted Tunakohoia Stream (south branch above north branch confluence; SW8) and impacted Tunakohoia Stream (north branch below discharge; SW7) (Table 1; Figure 1 Appendix A).

All four monitoring sites were physically similar hard-bottomed habitats. Healthy aquatic macroinvertebrates were observed at the un-impacted control sites along the Tui Stream and the Tunakohoia Stream south branch. In previous sampling by Coffey (2009), healthy macroinvertebrate communities were not observed downstream of the tailings and mine discharges in the Tui Stream and the Tunakohoia Stream north branch (the impacted sites), in fact they were virtually non-existent. However, repeat surveys four and six years on have demonstrated a notable improvement in the macroinvertebrate community.

Macroinvertebrate index scores and taxonomic richness increased at both impact sites between 2013 - 2015:

Impacted Tui Stream (2013 - 2015):

- AMDI scores indicate this site has improved from "moderately' impacted by AMD to un-impacted by AMD (although care should be taken when classifying the site as un-impacted).
- An increase in the number of identified Dipteran species, especially *Aphrophila spp*.
- Average taxonomic richness increased from 7 to 11 taxa, and macroinvertebrate abundance remained higher than 2009 results.

Impacted Tunakohoia Stream (2013 - 2015):

- : AMDI scores indicate this sites is still "moderately' impacted by AMD.
- An increase in the number of identified Dipteran species, especially *Aphrophila spp*.
- Average taxonomic richness remained at 8 taxa, and macroinvertebrate abundance remained higher than 2009 results.

The improved MCI scores (over baseline monitoring conducted in 2009) generally indicate that the macroinvertebrate quality and community isn't limited by habitat, but may be limited by other water quality issues (e.g., AMD). Mayflies (Ephemeroptera) were still absent from the impacted sites (Appendix B; Figure 3). The likely reason for absence of mayflies at the impacted sites is not yet understood.

It is positive to see an improvement at the impacted sites, particularly with regards to the presence of the stonefly *Acroperla trivacuata* and *Stenoperla spp*, the caddisfly *Hydropsyche* and the dipteran *Aphrophila sp*. However, species of stoneflies and caddisflies are known to tolerate lower pH and higher heavy metal concentrations than some other aquatic taxa (Gray and Harding, 2012). As the more sensitive taxa to heavy metal concentrations and fluctuations in pH, such as some mayfly species (Hickey and Golding, 2002; Sutcliffe and Hildrew, 1989), are still absent from the impact sites, this potentially indicates some level of continued environmental stress.

The improvement in macroinvertebrate community health in the Tui and Tunakohoia Streams (below the Tui mine discharge) is likely attributed to remediation efforts and the associated improvement of instream water quality conditions. The findings in this report now need to be correlated with results of water quality sampling conducted by PDP to further explore causations / likely reasons for the observed improvement in macroinvertebrate health.

6.0 Recommendations

- Given the notable improvement in macroinvertebrate health at the two impacted sites, it is recommended that ecological monitoring of macroinvertebrate health be continued to track remediation progress. Although improvements in aquatic health have been observed, abundance and taxonomic richness are still significantly lower in the impacted sites when compared to the un-impacted control sites. This indicates that the community has not yet returned to its pre mine discharge state.
- Seasonal changes (climatic condition) and stages of macroinvertebrate life cycles can have a significant influence on presence/absence of taxa. It is therefore recommended that a summer sampling survey be conducted to monitor seasonal changes.

7.0 References

Álvarez-Cabria M, Barquín J and Antonio Juanes J. 2010. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health? Ecological Indicators 10 (2010) 370–379.

Boothroyd I. and Stark J. 2000. Use of Invertebrates in monitoring. In. Collier KJ., Winterbourn MJ. eds New Zealand stream invertebrates: ecology and implications for management. New Zealand Limnological Society, Christchurch. Pp. 344 – 373.

Coffey,B., (2009). Environment Waikato Contract RCS 2009/10-0: Tui Mine Remedial Works – Instream Ecological Baseline Monitoring. *For* Environment Waikato.

Collier K, Haigh A, Kelly J 2005. Development of a reference site network for invertebrate monitoring of wadeable streams in the Waikato. Environment Waikato Technical Report 2005/29. Hamilton, Waikato Regional Council (Environment Waikato).

Gray, D.P., and Harding, J., (2012) Acid mine drainage index (AMDI): a benthic invertebrate biotic index for assessing coal mining impacts in New Zealand Streams. *New Zealand Journal of Marine and Freshwater Research* 36: 3: 335-352.

Harding, J. S. (2005). Impacts of metals and mining on stream communities. In 'Metal Contaminants in New Zealand'. (Eds T. A. Moore, A. Black, A. A. Centeno, J. S. Harding and D. A. Trumm.) pp. 343–357. (Caxton Press, Christchurch.)

Harding, J., and Champeau, O., (2008) Can benthic invertebrates be used to predict impacts in streams with acid mine inputs? Newsletter. University of Canterbury.

Hickey, C.W., and Clements, W.H., (1998) Effects of heavy metals on benthic macroinvertebrate communities in New Zealand Streams. *Environmental Toxicology and Chemistry* 17 (11): 2338-2346.

Hickey, C.W., and Golding, L.A., (2002) Response of macroinvertebrates to copper and zinc in a stream mesocosm. *Environmental Toxicology and Chemistry* 21 (9): 1854-1863.

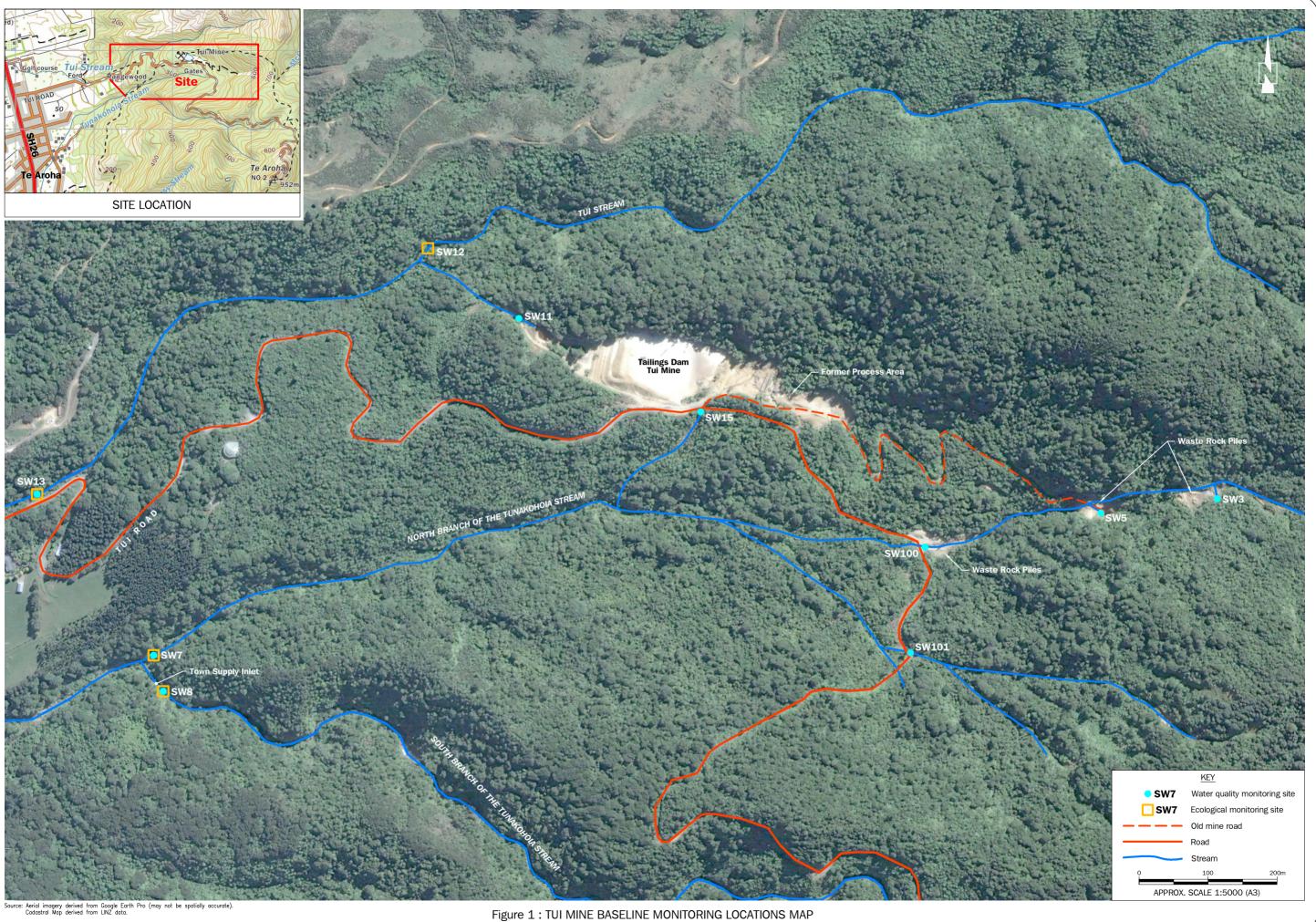
Lefcort, H., Vancura, J., Lider, E.L., (2010) 75 years after mining ends, stream insect diversity is still affected by heavy metals. Ecotoxicology. 19 (8): 1416-1425.

PDP (2010) Tui Remedial Work: Baseline Monitoring. Pattle Delamore Partners. *Prepared by:* Sharplin, R., and Rumsby, A. *For* Environment Waikato.

PDP (2012) Tui Mine Monitoring Report 2012 – Water Quality Monitoring (After Alkalinity Injection for Rehabilitation of Tui Mine). *Prepared by*: Rumsby, A. *For* Environment Waikato.

PDP (2013a) Tui Mine: Post Remediation Ecological Monitoring 2013. Pattle Delamore Partners. *Prepared by*: Wilks, T. *For* Environment Waikato.

PDP (2014) Tui Mine Monitoring Report 2013 – Water Quality Monitoring (After Rehabilitation of Tui Mine). *Prepared by*: Sky, K. *For* Environment Waikato.


Stark JD, 1998. SQMCI: a biotic index for freshwater macroinvertebrate coded abundance data. New Zealand Journal of Marine and Freshwater Research 32: 55-66.

Stark JD, Boothroyd IKG, Harding JS, Maxted JR and Scarsbrook MR. 2001. Protocols for sampling macroinvertebrates in wadeable streams. Prepared for the Ministry for the Environment. Sustainable Management Fund Contract No. 5103. New Zealand Macroinvertebrate Working Group Report No. 1. ISSN 1175-7701.

Stark JD, Maxted JR. 2007. A user guide for the Macroinvertebrate Community Index. Prepared for the Ministry for the Environment. Cawthron Report No. 1166.

Sutcliffe, D.W. and A.G. Hildrew, 1989. Invertebrate communities in acid streams. In: Acid toxicity and aquatic animals. Society for Experimental Biology Seminar Series, v. 34, (R. Morris, et al., eds), Cambridge University Press, pp. 13-30.

Appendix B

Macroinvertebrate Composition and Metrics and Habitat Field Assessment Forms

Table 1: Macroinvertebrate Identification and summary statistics

200 Fixed Count with scan for rare tax	xa		SW7					S١	N8			SW	12		SW13			
			15-0ct-15				15-0	ct-15			15-0	ct-15			15-0	ct-15		
ТАХА	мсі	AMDI	#1	#2	#3	#4	#1	#2	#3	#4	#1	#2	#3	#4	#1	#2	#3	#4
Mayflies	score	score																
Acanthophlebia cruentata	7	-	-	-	-	-	-	-	-	-	4	-	1	8	-	-	-	-
Ameletopsis perscitus	10	6	-	-	-	-	1	2	-	1	-	-	-	1	-	-	-	-
Austroclima sepia	9	4	-	-	-	-	-	2	-	3	1	1	7	1	-	-	-	-
Coloburiscus humeralis	9	8	-	-	-	-	1	38	1	39	3	5	5	-	-	-	-	-
Deleatidium spp.	8	6	-	-	-	-	74	15	43	-	15	17	34	22	-	-	-	-
Nesameletus spp.	9	9	-	-	-	-	2	-	4	-	-	1	-	1	-	-	-	-
Zephlebia dentata	7	9	-	-	-	-	1	1	-	4	1	2	4	-	-	-	-	-
Zephlebia versicolor	7	9	-	-	-	-	2	-	1	-	-	-	-	-	-	-	-	-
Zephlebia spp.	7	9	-	-	-	-	3	-	2	-	1	4	23	1	-	-	-	-
Stoneflies																		
Acroperla trivacuata	5	-	-	-	-	-	-	5	-	15	-	-	-	-	6	3	3	11
Austroperla cyrene	9	0	-	-	-	-	-	-	-	3	5	2	3	-	-	-	-	-
Megaleptoperla grandis	9	9		-	-	-	1	5	2	2	1	-	-	-	-	-	-	-
Spaniocerca sp.	8	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Stenoperla prasina	10	7	2	2	2	2	1	2	-	1	3	-	2	-	3	3	1	1
Stenoperla sp.	10	7	4	1	1	1	1	3	3	-	6	1	-	3	1	-	-	-
Taraperla pseudocyrene	7	10		-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
Zelandobius confusus group	5	0		-	_	-	6	54	28	29	8	2	9	3	-	1	5	-
Zelandoperla agnetis	10	4		-		-	-	1	4	10	5	86	1	-	-	-	-	-
Zelandoperla decorata	10	4	-	_	-	1	_		-	10	5	00	-		2	-	2	_
Dobsonflies	10	4	-	-	-	-	-	-	-	-	-	-	-	-	2	-		-
Archichauliodes diversus	7	2				_	2	1	5	6		-					2	
	1	2	-	-	-	-	2	1	5	0	-	-	-	-	-	-	2	-
Beetles	c	0	1						1		10	~	2	F			1	
Elmidae	6	0	1	-	-	-	-	-	1	-	18	2	2	5	-	-	1	-
Hydraenidae	8	5	-	-	-	-	-	1	1	1	9	2	1	2	-	-	-	-
Hydrophilidae	5	8	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
Ptilodactylidae	8	10	-	-	-	-	-	-	-	3	1	3	1	2	-	1	-	-
True Flies	_				<u> </u>			<u> </u>										
Aphrophila spp.	5	8	-	1	4	17	-	5	1	2	-	-	-	-	19	10	30	27
Empididae	3	5	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Eriopterini	9	3	-	-	-	-	-	1	1	-	2	2	-	3	1	-	1	7
Hexatomini	5	-	-	-	-	-	-	-	-	1	-	-	-	2	-	-	-	-
Limonia nigrescens	6	7	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Maoridiamesa spp.	3	0	2	1	1	12	-	-	-	-	-	-	-	-	5	7	8	-
Molophilus sp.	5	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
Neocurupira sp.	7	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Paralimnophila sp.	6	6	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Orthocladiinae	2	0	-	-	-	-	-	-	1	4	-	-	-	-	4	5	-	1
Polypedilum spp.	3	0	-	-	-	-	-	2	-	3	-	-	-	-	-	3	-	2
Stictocladius sp.	8	0	-	-	-	-	-	-	-	-	7	1	-	3	-	-	-	-
Tabanidae	3	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
Tanypodinae	5	0	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Tanytarsus funebris	3	0	-	-	-	-	-	-	-	-	-	-	2	1	-	-	-	-
Caddisflies																		
Costachorema hecton	7	9	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-
Costachorema sp.	7	9	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-
Helicopsyche sp.	10	8	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
Hydrobiosella mixta	9	7	-	-	-	-	-	-	2	8	1	1	12	-	-	-	-	2
Hydrobiosis spatulata	5	2	-	-	-	-	•	-	-	-	1	-	-	-	-	-	-	-
Hydrochorema sp.	9	2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
Continued																		

200 Fixed Count with scan for rare taxa			SW	17			SV	8			SW	12			SW	13		
				15-00	ct-15			15-0	ct-15		15-0ct-15					15-0	ct-15	
ТАХА	МСІ	AMDI	#1	#2	#3	#4	#1	#2	#3	#4	#1	#2	#3	#4	#1	#2	#3	#4
Caddisflies																		
Hydropsyche - Aoteapsyche group	9	5	-	-	-	-	-	1	1	3	-	-	-	-	-	-	1	-
Hydropsyche - Orthopsyche group	9	5	2	-	5	24	-	32	8	26	93	44	81	3	67	1	20	37
Polyplectropus sp.	8	4	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Pycnocentrodes spp.	5	0	-	-	7	8	1	-	-	-	-	-	-	-	-	1	2	-
Crustacea																		
Paranephrops planifrons	5	10	-	-	-	-	-	-	1	-	1	-	-	-	1	-	-	-
Collembola	6	-	-	-	-	-	1	-	1	-	-	-	-	-	-	-	-	-
Mites	5	-	-	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-
Flabellifrontipoda sp.	5	-	1	-	-	-	-	-	1	-	-	-	-	-	-	3	-	-
Oribatidae	5	-	2	-	1	-	1	-	1	-	-	-	-	-	-	-	-	-
Worms	1	1	-	-	-	-	-	-	-	6	1	1	1	-	-	-	-	-
Flatworms	3	-	2	-	1	3	-	-	-	-	1	-	-	1	-	-	-	-
Snails																		
Potamopyrgus antipodarum	4	10	-	-	-	-	2	3	10	9	18	15	3	10	4	-	-	-
SUMMARY STATISTICS																		
Total number of taxa (incl. rare									_									
taxa)			8	4	9	10	17	21	21	22	26	19	20	19	11	13	12	9
Number of rare taxa			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of individuals			16	5	23	70	101	176	121		208	192	194	73	113	40	76	89
MCI tolerance score			117	120	113	120	141	151	150	139	140	153	141	144	145	114	138	133
QMCI tolerance score			7	8	6	6	8	7	7	7	8	9	8	7	7	5	6	7
%EPT taxa			38	50	44	50	71	71	62	59	58	63	60	53	45	46	58	56
%EPT abundance			50	60	65	51	93	93	83	80	71	86	94	60	70	25	45	58
AMDI			27	33	35	46	78	75	73	66	71	65	62	60	57	42	29	41

Table 1: Macroinvertebrate Identification and summary statistics continued..

Field Assessment Form: Wadeable Streams

Channel and Riparian Features Dom Riparian Veg Fencing Open Pasture None of ineffective One side or partial Significantly Shaded Pasture Dom Riparian Veg None of ineffective One side or partial Significantly Shaded Pasture Dom Riparian Veg One side or partial Complete both sides Instream Hydraulic Conditions Ave. Stream width (active channel) 4:15 Ave Stream depth 0:12 - 0:17 Max. Stream width (active channel) 4:17 Ave Stream depth 0:26 Ave. Surface velocity Max Stream width (water) 1:75 Ave. Surface velocity Max Stream depth 0:12 - 0:17 Max Stream width (water) 1:75 DO (mg/L): [0] 1 3 DO (%): 2:02 DO (mg/L): [0] 1 3 Turbidity Turbidity Conductivity: 5[0< \$e Co DO (mg/L): [0] 1 3 DO (%): 2:02 Turbidity Other: 0 (%): 2:01 3 DO (%): 2:02 DO (%): 2:02 DO (%): 2:02 Turbidity Other: 0 (%): 2:02 DO (%): 2:02	Site Number:	WF	Easting: \	84-04	49	Northing:		Spm SG	
Canopy Cover Dom Riparian Veg Fencing Open Partly Shaded Crops None of ineffective One side or partial Significantly Shaded Exotic Trees None of ineffective One side or partial Significantly Shaded Exotic Trees None of ineffective One side or partial Max. Stream width (active channel) Are Stream depth Or 2.6 Ave. Stream width (water) Are Stream depth Or 2.6 Ave. Stream width (water) Are Stream depth Or 2.6 Max Stream width (water) Are Stream depth Or 2.6 Max Stream width (water) Are Stream depth Or 2.6 Max Stream width (water) Are Stream depth Or 2.6 Max Stream width (water) Are Stream depth Or 2.6 Max Stream width (water) Are Stream depth Or 2.6 Max Stream solution (longanic substrata) Other: Or 4 - 33 · 8 Stream Bottom Substrata Other: Of 4 - 33 · 8 Compaction (inorganic substrata): Assorted iszes tightly packed &/or overlapping composition Some (cope grattle Mostly a loose assortment with little overlap Ione (cope grattle Ione (cope grattle									
Open Crops None of ineffective Partly Shaded Pasture Conside or partial Significantly Shaded Exotic Trees Conplete both sides Native Shrubs Ave Stream width (active channel) Ave Stream depth Ott2 = 0×13 Max. Stream width (active channel) Ave Stream depth Ott2 = 0×13 Max. Stream width (active channel) Ave Stream depth Ott2 = 0×13 Max. Stream width (water) Stream side the active channel) Ave Stream depth Ott2 = 0×13 Max Stream width (water) Stream side the active channel) Ave Stream depth Ott2 = 0×13 Max Stream width (water) Stream side the active channel) Ave Stream depth Ott2 = 0×13 Max Stream width (water) Stream-Botom Substrata Other: DO (%): Stream-Botom Substrata Compaction (inorganic substrata): Compaction (inorganic substrata): Assorted sizes tightly packed &/or overlapping composition Stream-Botom Substrata Stream-Botom Substrata Compaction (inorganic substrata): Assorted sizes tightly packed with some overlap None of force (cock grattle) Mostly a loose assortment easily moved Embeddedness (% gravel-boulder particles covered by fine sediment): Stress			See See 1. Marine Start Property of the second start start and	an Veg		Fencing		or and the second	
Partly Shaded Pasture One side or partial Significantly Shaded Exotic Trees Native Shrubs Instream Hydraulic Conditions Ave Stream width (active channel) 4:15 Ave. Stream width (active channel) 4:15 Ave Stream depth Max Stream width (water) 5:16 0 (mg/L): 10 1:15 Turbidity Conductivity: 3:10 Stream depth Clear: Highly Turbid: 0 (her: Clear: Other: 0 (her: Stream-Bottom Substrata Comparison Compaction (inorganic substrata): Stream depth Assorted sizes tightly packed &/or overlapping composition Moderately packed &/or overlap Moderately packed with some overlap Stream depth Mostly a loose assortment easily moved Stress Embeddedness (% gravel-bou							neffective	K	
Significantly Shaded Exotic Trees Native Shrubs Complete both sides Instream Hydraulic Conditions Ave. Stream width (active channel) 4:15 Max. Stream width (active channel) Ave. Stream depth $0:12 - 0:19$ Max Stream width (water) Ave. Stream width (active channel) 4:15 Max Stream depth $0:26$ Ave. Surface velocity Ave. Stream width (water) $3:6$ Water Quality Ave. Surface velocity Temperature (C): $0:8$ Conductivity: $3:6$ Other: D0 (mg/l): $10:1:3$ D0 (%): $2:9:22$ D0 (%): Turbidity $0:1e - 3:8$ Stream-Bottom Substrata $0:1e - 3:8$ Stream-Bottom Substrata $0:1e - 3:8$ $0:1e - 3:8$ Compaction (inorganic substrata): Assorted sizes tightly packed &/or overlapping composition $4:9:23$ Mostly a loose assortment easily moved No packing/loose assortment easily moved Image: Stream depth size size size size size size size size						One side c	or partial		
Native Shrubs X Instream Hydraulic Conditions Ave. Stream width (active channel) Ave. Stream depth Max. Stream width (active channel) X Y Max. Stream width (active channel) X Y Max. Stream width (water) Y Y Max Stream width (water) Y Y Turbidity O Y Y Clear: Highly Turbid: O Y Orther: O Y Y Compaction (inorganic substrata): Assorted izes tightly packed &/or overlapping composition Y Some foose gratule Mostly a loose assortment with little overlap Mostly a loose assortment with little overlap Some foose gratule No pac		ded 🔀	Exotic Tree	S		-	•		
Instream Hydraulic Conditions Ave. Stream width (active channel) 4+5 Max. Stream width (active channel) 4+5 Max. Stream width (water) 1+75 Max Stream width (water) 3+6 Water Quality Temperature (C): [0+8 Clear: Object Slightly Turbid: 0ther: Other: 0ther: Stream-Bottom Substrata Sasorted iszes tightly packed &/or overlapping composition Moderately packed with some overlap Image: Stream Stre		L	Native Shru	bs	X	1.		L	
Max. Stream width (active channel)AreaMax Stream depthAve. Stream width (water) $11+7$ Ave. Surface velocityMax Stream width (water) $11+7$ Ave. Surface velocityMax Stream width (water) $11+7$ Ave. Surface velocityMax Stream width (water) $11+7$ Ave. Surface velocityTemperature (C): $[0, ?]$ Conductivity: $3 + 0$ Clear:Highly Turbid: $0 + 7 - 33 + 8$ Stream-Bottom Substrata $0 + 7 - 33 + 8$ Compaction (inorganic substrata):Assorted sizes tightly packed &/or overlapping composition $1 + 9 - 23$ Moderately packed with some overlap $0 + 7 - 33 + 8$ Mostly a loose assortment with little overlap $0 + 7 - 33 + 8$ Mostly a loose assortment easily moved $0 + 7 - 33 + 8$ Embeddedness (% gravel-boulder particles covered by fine sediment): $< 5 + 25 + 9 + 26 - 50 + 51 - 57 + 51 - 51 - 57 + 51 - 57 + 51 - 57 + 51 - 57 + 51 - 57 + 51 - 57 + 51 - 57 + 51 - 51 - 57 + 51 - 57 + 51 - 57 + 51 - 57 + 51 - 57 + 51 - 51 - 57 + 51 - 51 - 57 + 51 - 51 - 57 + 51 - 57 + 51 - 51 - 57 + 51 - 57 + 51 - 51 - 57 + 51 - 51 - 51 - 51 - 51 - 51 - 51 + 51 - 51 -$	Instream Hydrau	ulic Conditions							
Max. Stream width (active channel) 4.7 Ave. Stream width (water) 11.75 Max Stream vidth (water) 11.75 Max Stream vidth (water) 11.75 Clear: Highly Turbid: Other: 01.9 Compaction (inorganic substrata): Assorted sizes tightly packed &/or overlapping composition Moderately packed with some overlap Mostly a loose assortment with little overlap No packing/loose assortment easily moved Embeddedness (% gravel-boulder particles covered by fine sediment): <5%	Ave. Stream widt	th (active chan	nel) 4:5)	Ave Stream	n depth	012-0	0.17	
Water Quality Temperature (C): 0 · S Conductivity: \Im_{0} · S DO (mg/L): $O(T,S)$ Turbidity (H = 9.23 Slightly Turbid: 0 · P - 33 · 8 Stream-Bottom Substrata Other: $O(F)$ - 33 · 8 Stream-Bottom Substrata Other: $O(F)$ - 33 · 8 Stream-Bottom Substrata Other: $O(F)$ - 33 · 8 Stream-Bottom Substrata Some looge getter Moderately packed &/or overlapping composition \checkmark Some looge getter Moderately packed with some overlap Moderately packed with some overlap Image: Some looge getter Mosting/loose assortment with little overlap Image: Some looge getter Some looge getter Stream Bottion S(% gravel-boulder particles covered by fine sediment): Some looge getter Some looge getter <5%	Max. Stream wid	lth (active chan	inel) 47		Max Strea	m depth			
Water QualityTemperature (C): $0 \cdot 8$ Conductivity: $3 \mid 0 sec. 5$ $D0 (mg/L): 0 \mid 1 \cdot 3 D0 (mg/L): 0 \mid 1$	Ave. Stream widt	th (water)	, Ne7	5	Ave. Surfa	ce velocity			
Temperature (C): $[0 + 2]$ Conductivity: $3 \mid 0 \leq 8^{\circ} \leq \frac{1}{2}$ DO (mg/L): $[0 + 3]$ DO (%): $3 \leq 1 \geq 2^{\circ}$ Turbidity(H = 9, 23 Other:Other:Other - 33 $\cdot 8$ Stream-Bottom SubstrataCompaction (inorganic substrata):Assorted sizes tightly packed &/or overlapping compositionYSome loopse gatureModerately packed with some overlapMostly a loose assortment with little overlapNo packing/loose assortment easily movedEmbeddedness (% gravel-boulder particles covered by fine sediment):<5%	<td>Max Stream widt</td> <td>th (water)</td> <td>31</td> <td>6</td> <td></td> <td></td> <td></td> <td></td>	Max Stream widt	th (water)	31	6				
Turbidity Clear:($H = 9.23$ $Oth = -33.8$ Slightly Turbid: $Oth = -33.8$ Stream-Bottom SubstrataCompaction (inorganic substrata):Assorted sizes tightly packed &/or overlapping compositionMostiy a loose assortment with little overlapMostly a loose assortment with little overlapNo packing/loose assortment easily movedEmbeddedness (% gravel-boulder particles covered by fine sediment):<5%26-50%51-75%Organic Material (% cover*)Large wood (>10cm diameter)<5%5-25%26-50%51-75%Coarse Detritus (small wood, sticks, leaves etc)<5%5-25%26-50%51-75%Sine (clamn) Organic Deposits (edges & backwaters)<5%5-25%26-50%51-75%Sine (Sine (Mostly a loose assortment easily movedEmbeddedness (% gravel-boulder particles covered by fine sediment):<5%5-25%26-50%51-75%Coarse Detritus (small wood, sticks, leaves etc)<5%Single (for macroinvertebrates,									
Turbidity Clear:($H = 9.23$ $Oth = -33.8$ Slightly Turbid: $Oth = -33.8$ Stream-Bottom SubstrataCompaction (inorganic substrata):Assorted sizes tightly packed &/or overlapping compositionMostiy a loose assortment with little overlapMostly a loose assortment with little overlapNo packing/loose assortment easily movedEmbeddedness (% gravel-boulder particles covered by fine sediment):<5%26-50%51-75%Organic Material (% cover*)Large wood (>10cm diameter)<5%5-25%26-50%51-75%Coarse Detritus (small wood, sticks, leaves etc)<5%5-25%26-50%51-75%Sine (clamn) Organic Deposits (edges & backwaters)<5%5-25%26-50%51-75%Sine (Sine (Mostly a loose assortment easily movedEmbeddedness (% gravel-boulder particles covered by fine sediment):<5%5-25%26-50%51-75%Coarse Detritus (small wood, sticks, leaves etc)<5%Single (for macroinvertebrates,	Temperature (C)	: 10,8	Conductivit	y: 310	SPCUS	DO (mg/L)	: 101.35		
Clear: Highly Turbid: $\mathcal{H} = 9.23$ Slightly Turbid: Other: $\mathcal{O}(\mathbb{N} = -33.8)$ Stream-Bottom Substrata $\mathcal{O}(\mathbb{N} = -33.8)$ Compaction (inorganic substrata): Assorted sizes tightly packed &/or overlapping composition \mathcal{V} Some ($\mathcal{O}(\mathbb{N} = \mathcal{G}(\mathbb{N}))$ Assorted sizes tightly packed &/or overlapping composition \mathcal{V} Some ($\mathcal{O}(\mathbb{N} = \mathcal{G}(\mathbb{N}))$ Moderately packed with some overlap \mathcal{V} Some ($\mathcal{O}(\mathbb{N} = \mathcal{G}(\mathbb{N}))$ Mostly a loose assortment with little overlap \mathcal{V} Some ($\mathcal{O}(\mathbb{N} = \mathcal{G}(\mathbb{N}))$ No packing/loose assortment easily moved \mathbb{I} \mathbb{I} Embeddedness (% gravel-boulder particles covered by fine sediment): $\leq 5\%$ $\leq 5-25\%$ $26-50\%$ $\leq 51-75\%$ $= 5-25\%$ $26-50\%$ $\leq 51-75\%$ $= 5-25\%$ $\leq 26-50\%$ $\leq 51-75\%$ $= 5-25\%$ $\leq 5-25\%$ $\leq 5-25\%$ $\leq 5-25\%$ $\leq 5-50\%$ $\leq 5-25\%$ $\leq 5-50\%$ $\leq 5-25\%$ $\leq 5-50\%$ $\leq 5-50\%$ $\leq 5-75\%$ $\leq 5-50\%$ $\leq 5-75\%$ $\leq 5-50\%$ $\leq 5-50\%$						DO (%):	8-920		
Creation Implify Turbid: Other: Stream-Bottom Substrata Compaction (inorganic substrata): Assorted sizes tightly packed &/or overlapping composition Y Some (Dose gradued and the second and the s	and the second					1 = 0 ===			
Signal (1000) Stream-Bottom Substrata Compaction (inorganic substrata): Assorted sizes tightly packed &/or overlapping composition Moderately packed with some overlap Mostly a loose assortment with little overlap No packing/loose assortment easily moved Embeddedness (% gravel-boulder particles covered by fine sediment): <5%		Hig	hly Turbid:		ęr				
Compaction (inorganic substrata): Assorted sizes tightly packed &/or overlapping composition Image: Some (DOSE gritting) Moderately packed with some overlap Image: Some (DOSE gritting) Mostly a loose assortment with little overlap Image: Some (DOSE gritting) No packing/loose assortment easily moved Image: Some (DOSE gritting) Embeddedness (% gravel-boulder particles covered by fine sediment): Some (DOSE gritting) <5%			ier:			OIP -S	5.8		
Assorted sizes tightly packed &/or overlapping composition	Stream-Bottom S	Substrata							
Moderately packed with some overlap 00 Mostly a loose assortment with little overlap 00 No packing/loose assortment easily moved 00 Embeddedness (% gravel-boulder particles covered by fine sediment): 00 <5%	Compaction (ino	rganic substrat	ta):				en Engelster ander		
Moderately packed with some overlap 00 Mostly a loose assortment with little overlap 00 No packing/loose assortment easily moved 00 Embeddedness (% gravel-boulder particles covered by fine sediment): 00 <5%	Assorted sizes tig	ghtly packed &	/or overlappin	g compos	ition	V Je	me loose, q.	aurel	
No packing/loose assortment easily moved Embeddedness (% gravel-boulder particles covered by fine sediment): <5%	Moderately pack	ed with some	overlap				vv	•	
No packing/loose assortment easily movedEmbeddedness (% gravel-boulder particles covered by fine sediment):<5%	Mostly a loose as	ssortment with	n little overlap	·. · ·					
<5% $5-25%$ $26-50%$ $51-75%$ $>75%$ $>75%$ Organic Material (% cover*) $>26-50%$ Large wood (>10cm diameter) $<5%$ $5-25%$ $<5%$ $5-25%$ $26-50%$ $>75%$ Coarse Detritus (small wood, sticks, leaves etc) $<5%$ $5-25%$ $26-50%$ $5-25%$ $5-25%$ $26-50%$ $51-75%$ $>75%$ $=$ Ine (<1mm) Organic Deposits (edges & backwaters)						·	· · · · · · · · · · · · · · · · · · ·		
51-75% >75% Organic Material (% cover*)		% gravel-bould	ler particles co	vered by f	ine sedime	ent):			
Organic Material (% cover*) Large wood (>10cm diameter) <5%		7	5-25%			26-50%			
Large wood (>10cm diameter)<5%			>75%			. And a second			
<5%									
51-75% >75% Coarse Detritus (small wood, sticks, leaves etc) <5%	Large wood (>10	<u>cm diameter)</u>							
Coarse Detritus (small wood, sticks, leaves etc) <5%				Ý		26-50%			
5% 5-25% 26-50% 51-75% >75% Sine (<1mm) Organic Deposits (edges & backwaters)					L				
51-75% >75% Fine (<1mm) Organic Deposits (edges & backwaters)		small wood, st	icks, leaves etc						
Fine (<1mm) Organic Deposits (edges & backwaters)				$ \chi $		26- 50%			
<5% 5-25% 26-50% 51-75% >75%									
51-75% >75% Habitat Types Sampled (for macroinvertebrates, % effort: each column) (% of effort; should sum to 100% Riffle 70 Run 30 Stones: 60		anic Deposits (edges & backv	vaters)					
Habitat Types Sampled (for macroinvertebrates, % effort: each column) (% of effort; should sum to 100% Riffle 70 Riffle 70 Run 30 Stones: 80	<5%	X	5-25%			26-50%			
% of effort; should sum to 100% IOO Riffle 70 Run 30 Total% 100 Stones: 60 Wood 15 100	51-75%	/	>75%						
Riffle70Run30Total%100Stones:80Wood15100	Habitat Types Sai	mpled (for mag	croinvertebrat	es, % effo	rt: each col	umn)			
Stones: 80 Wood 15		ıld sum to 1009	%						
	% of effort; shou	70	Run	30		Total%	100		
Edges 5 Macrophytes Total% 100	· · · · · · · · · · · · · · · · · · ·	04)	Wood	10	2		ha		
	Riffle	W				Total%	100		
Comments	Riffle	<u> </u>	Macrophyte	S					

Job Name: Tui	Ecology 1	PDP Job #: A022778	13 Date: 15.10.15	Time (NZST)
Location:	5	Site Name: <i>Tuna koho</i>	ia Assessor: AG+PL	Easting:
Site id: SW7	æ.			Northing:
Habitat Parameter		C	ategory	
	Optimal	Suboptimal	Marginal	Poor
1. Riparian Vegetative	Bankside vegetation	 Bankside vegetation 	 Pathways present and 	Break frequent
Zone Width	buffer > 10 m	buffer < 10 m	/or stock access to stream	Human activity obvious
	Continuous and dense	Mostly continuous	 Mostly healed over 	
Left Bank	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Right Bank	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Mean LB & RB				
2. Vegetative Zone	 Bank surfaces and 	 Bank surfaces covered 	 Bank surfaces covered by a 	Bank surfaces covered by
Protection	immediate riparian zones	mainly by native vegetation	mixture of grasses, shrubs,	grasses and shrubs
	covered by native vegetation	Disruption evident	blackberry, willow and	Disruption of stream bank
	• Trees, understory shrubs	Banks may be covered	introduced trees	vegetation very high
	or non woody plants present	by exotic forest	Vegetation disruption obvious	 Grass heavily grazed
	Vegetation disruption minim	nal	 Bare soil/closely cropped 	Significant stock damage
			vegetation common	to the bank
Left Bank	20 19 18 17, 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Right Bank	20)19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Mean LB & RB	:		3	•
Stability	 Banks stable 	 Moderately stable 	 Moderately unstable 	Unstable
	• Erosion/bank failure absent	 Infrequent, small areas of 	• 30 - 60% of bank in reach has	 Many eroded areas
	or minimal	erosion mostly healed over	areas of erosion	• 60 - 100 % of bank has
	• < 5 % of bank affected	 5 - 30 % of bank eroded 	• High erosion potential during	erosional scars
			floods	
Left Bank	20 19 18 17 16	15 12 13 12 11	10 9 8 7 6	5 4 3 2 1
Right Bank	20 19 18 17 16	18 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Mean LB & RB				
4. Frequency of Riffles	 Riffles relatively frequent 	 Occurrence of riffles infrequer 	 Occasional riffle or run 	 Generally flat water shallow
	• Disturbance between riffles	Distance between riffles	 Bottom contours provide 	riffles
	divided by width of stream	divided by width of stream	some habitat	 Poor habitat
	= 5 - 7	= 7 - 15	 Distance between riffles 	Distance between riffles
	 Variety of habitat is key 		divided by width of stream	divided by width of stream
			= 15 - 25	= > 25
Score	20 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Subtotal				
5. Channel	 Changes to channel/dredging 	 Some changes to channel 	 Channel changes/dredging 	 Banks shored with gabion
Alteration	absent or minimal	dredging	extensive	or cement
	 Stream with normal pattern 	 Evidence of past channel 	 Embankments or shoring 	 80 % of the stream reach
		dredging	structures present on both banks	channelised and disturbed
		 Recent channel dredging 	• 40 - 80 % of the reach	 Instream habitat altered
		not present	channelised and disturbed	or absent
Score	(20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

Habitat Parameter		C	ategory a	
	Optimal	Suboptimal	Marginal	Poor
6. Sediment Deposition	Little/no islands or point	New increase in bar formatio	 Some deposition of new grave 	 Heavy deposits of fine
	bars present	mostly from gravel, sand or	sand or fine sediment on old	material
	• < 20 % of the bottom affec	fine sediment	and new bars	Increased bar development
	by stream deposition	• 20 - 50 % of bottom affected	 50 - 80 % of the bottom 	 > 80 % of the bottom
		 Slight deposition in pools 	affected	changing frequently
			 Sediment deposits at obstructi 	 Pools almost absent due to
······································			constructions and bends	sediment deposition
Score	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
7. Velocity/Depth	 4 velocity/depth regimes pre 	 3 of 4 velocity/depth regimes 	 2 of 4 velocity/depth regimes 	 Dominated by 1 velocity/
Regimes	 Slow/deep, slow/shallow 	 If fast/shallow is missing then 	 If fast/shallow or slow/shallow 	depth regime
	Fast/shallow, Fast/deep	score lower	is missing then score lower	 Usually slow/deep
Score	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
8. Abundance and	 > 50 % substrate favourable 	 30 - 50 % substrate favourab 	 10 - 30 % substrate favourabl 	 < 10 % substrate favourabl
Diversity of Habitat	for invert colonisation, wide va	for invertebrate colonisation	for invertebrate colonisation	for invertebrate colonisation
	of woody debris, riffles, root m	 Snags/submerged logs/under- 	 Fish cover patchy 	 Fish cover rare or absent
	 Snags/submerged logs/under 	cut banks/cobbles	• 60 - 90 % substrate easily mo	 Substrate unstable or
	cut banks/cobbles provides	 Fish cover common 	by foot	lacking
. 41	abundant fish cover	 Moderate variety of habitat 	Woody debris rare or may be	 Stable habitats lacking or
		types. Can consist of some new material	smothered by sediment.	or limited to macrophytes
Score	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
9. Periphyton	 Periphyton not visible on har 	 Periphyton not visible on ston 		 Periphyton obvious and
	held stones	 Stable substrate 	• < 20 % cover of available sub	
	 Stable substrate 	Periphyton obvious to touch		 > 20 % cover of available
	 Surfaces rough to touch 			substrate
Score	20 19 18 17 16	15 14 13 12 11	10 (9) 8 7 6	5 4 3 2 1
TOTAL SCORE	Note: Only use means of LB an	d RB values		

solutio	ons for	your enviro	nment

Field Assessment Form: Wadeable Streams

	Job Number: A	02277813	3 Job Name: Tu	i Ecolog	У Assessor:	AG + PL	
	Location: TU	nakohoia	Date: 15/10	0/15	Time (NZS	T): 1151	
		SM8		404-64	Northing:	5843432	2.
	Channel and Rip	parian Features					
	Canopy Cover Open Partly Shaded Significantly Sha	ded	Dom Riparian Crops Pasture Exotic Trees Native Shrubs	Veg -	Fencing None of in One side o Complete I	r partial	1/10t, 5+19t*220
	Instream Hydrau	ulic Conditions					
	Ave. Stream wid Max. Stream wid Ave. Stream wid Max Stream wid Water Quality	th (active chan dth (active chan th (water)	nel) 2 · 2 inel) 4 · 1 √ , 9 w		ream depth tream depth urface velocity	<u>(107 m)</u> (220 m)	
$\langle \rangle$	Temperature (C)	: 10:2	Conductivity:	8/11	DO (mg/L):	8.87	
	Turbidity Clear:	Hig	hly Turbid:]	DO (%): " PH =7.24	99.3	
MAY)	Slightly Turbid: Stream-Bottom S	Oth Substrata	er:		016=22	6 - 2 8	
ζ''	Compaction (ino		ta):		• •		
			/or overlapping co	omposition			
	Moderately pack			÷		· · · · · · · · · · · · · · · · · · ·	
	Mostly a loose as				·		
	No packing/loos		asily moved ler particles cover	od hy fino cor	<u> </u> iman t \:		(
	<5%		5-25%		26-50%		
	51-75%		>75%			J J	
, —	Organic Material	l (% cover*)					No. of the second s
See roll -	Large wood (>10	cm diameter)					
Here	<5%	*	5-25%		26-50%		
	51-75%		>75%				
(Coarse Detritus (1		Standard State			
1	<5%	+	5-25%		26- 50%		
	51-75%		>75% edges & backwate				
7			5-25%		26-50%		
	51-75%		>75%	×	20-3078		
		mpled (for ma	croinvertebrates,	% effort: each	column)		
	(% of effort; shou		A STATE OF A				
		50	Run	70	Total%	100	
	Stones:	40 85	Wood	15			- ~
	Edges		Macrophytes		Total%	(00)	
	Comments						
	Instream high	habitat i	diversity a	ve stream Indi	retion -	night truns av	0
	Photo Numbers:	Stenoperia in	ucus, realandopeila si	1			(isb)
	Enstream high Photo Numbers: - lage tree t	blocking uls	, not includi	M) (c, 111	Il sway 't- fes	- Kould l	Jens Jens f1

Location:	S	ite Name: Tunakohoi	'a Assessor: AG + PL	Easting:
Site id: Shy 8)		- 🥨	Northing:
Habitat Parameter		с	ategory	and the second
	Optimal	Suboptimal	Marginal	Poor
1. Riparian Vegetative	 Bankside vegetation 	 Bankside vegetation 	 Pathways present and 	Break frequent
Zone Width	buffer > 10 m	buffer < 10 m	/or stock access to stream	Human activity obvious
	Continuous and dense	Mostly continuous	 Mostly healed over 	,
Left Bank	20 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2
Right Bank	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2
Mean LB & RB				
2. Vegetative Zone	 Bank surfaces and 	Bank surfaces covered	Bank surfaces covered by a	 Bank surfaces covered b
Protection	immediate riparian zones	mainly by native vegetation	mixture of grasses, shrubs,	grasses and shrubs
	covered by native vegetation	Disruption evident	blackberry, willow and	Disruption of stream bar
	• Trees, understory shrubs	Banks may be covered 4	introduced trees	vegetation very high
	N	by exotic forest	Vegetation disruption obvious	Grass heavily grazed
	 Vegetation disruption minim 	· ·	Bare soil/closely cropped	 Significant stock damage
	· Vegetation disruption minim	αι . ···	vegetation common	to the bank
Left Bank	20 19 18 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2
Right Bank	20 19 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2
Mean LB & RB	······································			·
Stability	 Banks stable 	 Moderately stable 	 Moderately unstable 	Unstable
-	 Erosion/bank failure absent 	 Infrequent, small areas of 	• 30 - 60% of bank in reach has	Many eroded areas
	or minimal	erosion mostly healed over	areas of erosion	• 60 - 100 % of bank has
	• < 5 % of bank affected	 5 - 30 % of bank eroded 	High erosion potential during	erosional scars
			floods	с
Left Bank	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5432
Right Bank	20 19 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5432:
Mean LB & RB				
4. Frequency of Riffles	Riffles relatively frequent	Occurrence of riffles infrequer	Occasional riffle or run	 Generally flat water shall
diversity	Disturbance between riffles	 Distance between riffles 	Bottom contours provide	riffles
Mu habitat	divided by width of stream	divided by width of stream	some habitat	 Poor habitat
VITTE	= 5 - 7	= 7 - 15	 Distance between riffles 	Distance between riffles
rock drop	 Variety of habitat is key 		divided by width of stream	divided by width of stream
P1501			= 15 - 25	= > 25
Score	20 19 (18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Subtotal		historiu	auxill	Kneens
5. Channel	 Changes to channel/dredging 	 Some changes to channel 	Channel changes/dredging	 Banks shored with gabior
Alteration	absent or minimal	dredging	extensive	or cement
	 Stream with normal pattern 	 Evidence of past channel 	 Embankments or shoring 	 80 % of the stream rea
		dredging	structures present on both banks	channelised and disturbed
		Recent channel dredging	• 40 - 80 % of the reach	 Instream habitat altered
		not present	channelised and disturbed	or absent
Score	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1

town supply

Habitat Parameter		C	ategory	
	Optimal ·	Suboptimal	Marginal	Poor
6. Sediment Deposition	 Little/no islands or point 	New increase in bar formatio	 Some deposition of new grave 	 Heavy deposits of fine
	bars present	mostly from gravel, sand or	sand or fine sediment on old	material
	• < 20 % of the bottom affect	fine sediment	and new bars	 Increased bar development
	by stream deposition	• 20 - 50 % of bottom affected	• 50 - 80 % of the bottom	 > 80 % of the bottom
		 Slight deposition in pools 	affected	changing frequently
			Sediment deposits at obstructi	Pools almost absent due to
			constructions and bends	sediment deposition
Score	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
7. Velocity/Depth	 4 velocity/depth regimes pre 	 3 of 4 velocity/depth regimes 	• 2 of 4 velocity/depth regimes	 Dominated by 1 velocity/
Regimes	 Slow/deep, slow/shallow 	 If fast/shallow is missing then 	• If fast/shallow or slow/shallow	depth regime
	Fast/shallow, Fast/deep	score lower	is missing then score lower	 Usually slow/deep
Score	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
8. Abundance and	 > 50 % substrate favourable 	 30 - 50 % substrate favourab 	 10 - 30 % substrate favourabl 	< 10 % substrate favourab
Diversity of Habitat	for invert colonisation, wide va	for invertebrate colonisation	for invertebrate colonisation	for invertebrate colonisation
	of woody debris, riffles, root m	 Snags/submerged logs/under- 	 Fish cover patchy 	 Fish cover rare or absent
	 Snags/submerged logs/under 	cut banks/cobbles	 60 - 90 % substrate easily mo 	 Substrate unstable or
	cut banks/cobbles provides	Fish cover common	by foot	lacking
	abundant fish cover	 Moderate variety of habitat 	 Woody debris rare or may be 	 Stable habitats lacking or
	 Must not be new or transien 	types. Can consist of some new	smothered by sediment.	or limited to macrophytes
	· ·	material	· ·	
Score	(20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
9. Periphyton	Periphyton not visible on har	 Periphyton not visible on ston 	 Periphyton visible 	 Periphyton obvious and
	held stones	 Stable substrate 	• < 20 % cover of available sub	prolific
	 Stable substrate 	 Periphyton obvious to touch 		 > 20 % cover of available
	 Surfaces rough to touch 			substrate
Score	20 19 18 17 16	15 (14) 13 12 11	10 9 8 7 6	5 4 3 2 1
TOTAL SCORE	Note: Only use means of LB ar	nd RB values		

0.8

2.0 3.0 3.8

۰,

solutions for your environment

Field Assessment Form: Wadeable Streams

Job Number: P	90227781	َ الله Job Name: أ	TUI E	cology	Assessor:	PL+ Pic	â
	<i>Ui</i>		10.15	9 <u></u> ,	Time (NZS	T): 1550	>
Site Number:	SW12	Easting:	8408	395	Northing:		094
	parian Features						
Canopy Cover		Dom Riparia	n Veg		Fencing		
Open		Crops			None of in	effective	
Partly Shaded		Pasture			One side c	or partial	
Significantly Sha	aded 📈	Exotic Trees			Complete	•	
		Native Shruk)S	\times			
Instream Hydra	ulic Conditions						0,050
Ave. Stream wie	dth (active chann			Ave Stream	n depth		0.085
Max. Stream wi	dth (active chann	iel) Z	- 5	Max Stream	n depth		0,100
Ave. Stream wid	dth (water)	tz,		Ave. Surfac	e velocity		0.04-0
Max Stream wid	dth (water)	3.0	2				
Water Quality							
Temperature (C	:):	Conductivity	: 103.9	ว	DO (mg/L)	: 8,86	0.070
10.8					DO (%):	专金 101	.9 0.130
Turbidity						<u> </u>	0.120
Clear:		ly Turbid:		ρļ	-1 = 6.9 ORP =	55	7 20.08
Slightly Turbid:	l · Othe	er:	an a	An an airt Airthean	ORP =	(6,6	3910
Stream-Bottom							
	organic substrata						
	ightly packed &/		g composi	tion			
	ked with some o	-					- Ref
	assortment with		••		<u> </u>		
Contraction of the second s	se assortment ea						JU V.
	(% gravel-boulde	-	ered by t	ne sealmei			(4)
<5% 51-75%		5-25% >75%			26-50%		080.0
							0.080
Organic Materia Large wood (>1				an da generale de propie de se se aquia d	anna ann ann ann an ann an ann		- 0.190
<5%		5-25%	X		26-50%		0.070
51-75%	7	>75%			20-3070		0.060
	(small wood, stic	AND					
<5%	<u></u>	5-25%		andre of the state	26- 50%		
51-75%		>75%			20 00/0	I	
	ganic Deposits (e		aters)	sandi taa jaanaan			
<5%		5-25%			26-50%		
51-75%		>75%				I I	
	ampled (for maci		s, % effor	t: each <u>col</u> u	ımn)		
	ould sum to 100%	State Stat		an a		and a second	
Riffle	60	Run	40		Total%	100	
Stones:		Wood	· · · ·				1
Edges		Macrophytes			Total%		
Comments							
				·····			
Photo Numbers	:						

Job Name: 月027	77813	DP Job #: A02 2778		Time (NZST) 1550
Location:	5	Site Name: Tui	Assessor: PL + IA G	Easting:
Siteid: SM12)			Northing:
Habitat Parameter		C	ategory	
	Optimal	Suboptimal	Marginal	Poor
1. Riparian Vegetative	Bankside vegetation	 Bankside vegetation 	 Pathways present and 	 Break frequent
Zone Width	buffer > 10 m	buffer < 10 m	/or stock access to stream	 Human activity obvious
	Continuous and dense	 Mostly continuous 	 Mostly healed over 	
Left Bank	(20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Right Bank	(20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Mean LB & RB				
2. Vegetative Zone	 Bank surfaces and 	Bank surfaces covered	Bank surfaces covered by a	 Bank surfaces covered by
Protection	immediate riparian zones	mainly by native vegetation	mixture of grasses, shrubs,	grasses and shrubs
	covered by native vegetation	Disruption evident	blackberry, willow and	Disruption of stream bank
	• Trees, understory shrubs	Banks may be covered	introduced trees	vegetation very high
	or non woody plants present	by exotic forest	Vegetation disruption obvious	 Grass heavily grazed
	Vegetation disruption minim	nal	Bare soil/closely cropped	 Significant stock damage
			vegetation common	to the bank
Left Bank	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Right Bank	(20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Mean LB & RB	1		-	
Stability	Banks stable	Moderately stable	Moderately unstable	Unstable
	• Erosion/bank failure absent	 Infrequent, small areas of 	• 30 - 60% of bank in reach has	 Many eroded areas
	or minimal	erosion mostly healed over	areas of erosion	• 60 - 100 % of bank has
	• < 5 % of bank affected	• 5 - 30 % of bank eroded	High erosion potential during	erosional scars
			floods	
Left Bank	20 (19) 18 17 16	15 14 13 (12) 11	10 9 8 7 6	5 4 3 2 1
Right Bank	20 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Mean LB & RB				
4. Frequency of Riffles	 Riffles relatively frequent 	Occurrence of riffles infrequer	 Occasional riffle or run 	 Generally flat water shallow
	Disturbance between riffles	Distance between riffles	Bottom contours provide	riffles
	divided by width of stream	divided by width of stream	some habitat	 Poor habitat
	= 5 - 7	= 7 - 15	Distance between riffles	 Distance between riffles
	 Variety of habitat is key 		divided by width of stream	divided by width of stream
			= 15 - 25	= > 25
Score	20 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Subtotal				
5. Channel	 Changes to channel/dredging 	 Some changes to channel 	 Channel changes/dredging 	 Banks shored with gabion
Alteration	absent or minimal	dredging	extensive	or cement
	 Stream with normal pattern 	 Evidence of past channel 	 Embankments or shoring 	 > 80 % of the stream reach
		dredging	structures present on both banks	channelised and disturbed
		Recent channel dredging	 40 - 80 % of the reach 	 Instream habitat altered
		not present	channelised and disturbed	or absent
Score	(20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

Habitat Parameter		ategory			
	Optimal	Suboptimal	Marginal	Poor	
6. Sediment Deposition	 Little/no islands or point 	New increase in bar formatio	 Some deposition of new grave 	 Heavy deposits of fine 	
	bars present	mostly from gravel, sand or	sand or fine sediment on old	material	
	• < 20 % of the bottom affect	fine sediment	and new bars	 Increased bar development 	
	by stream deposition	 20 - 50 % of bottom affected 	 50 - 80 % of the bottom 	 > 80 % of the bottom 	
		 Slight deposition in pools 	affected	changing frequently	
			 Sediment deposits at obstructi 	Pools almost absent due to	
			constructions and bends	sediment deposition	
Score	20 19 18 17 (16)	14 13 12 11	10 9 8 7 6	5 4 3 2 1	
7. Velocity/Depth	 4 velocity/depth regimes pre 	 3 of 4 velocity/depth regimes 	 2 of 4 velocity/depth regimes 	 Dominated by 1 velocity/ 	
Regimes	 Slow/deep, slow/shallow 	 If fast/shallow is missing then 	 If fast/shallow or slow/shallow 	depth regime	
	Fast/shallow, Fast/deep	score lower	is missing then score lower	 Usually slow/deep 	
Score	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	
8. Abundance and	• > 50 % substrate favourable	 30 - 50 % substrate favourab 	 10 - 30 % substrate favourabl 	< 10 % substrate favourabl	
Diversity of Habitat	for invert colonisation, wide va	for invertebrate colonisation	for invertebrate colonisation	for invertebrate colonisation	
	of woody debris, riffles, root m	 Snags/submerged logs/under- 	 Fish cover patchy 	 Fish cover rare or absent 	
	 Snags/submerged logs/under 	cut banks/cobbles	• 60 - 90 % substrate easily mo	 Substrate unstable or 	
	cut banks/cobbles provides	 Fish cover common 	by foot	lacking	
r	abundant fish cover	 Moderate variety of habitat 	 Woody debris rare or may be 	 Stable habitats lacking or 	
	 Must not be new or transien 	types. Can consist of some new	smothered by sediment.	or limited to macrophytes	
1		material	2		
Score	20 20 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	
9. Periphyton	 Periphyton not visible on har 	 Periphyton not visible on ston 	 Periphyton visible 	 Periphyton obvious and 	
	held stones	 Stable substrate 	< 20 % cover of available substant	prolific	
	 Stable substrate 	Periphyton obvious to touch		 > 20 % cover of available 	
	 Surfaces rough to touch 		\sim	substrate	
Score	20 19 18 17 16	15 14 13 12 11	10 9 (8) 7 6	5 4 3 2 1	
OTAL SCORE	Note: Only use means of LB an	d RB values			

	Ş		
solutic	ons for	your enviro	nment

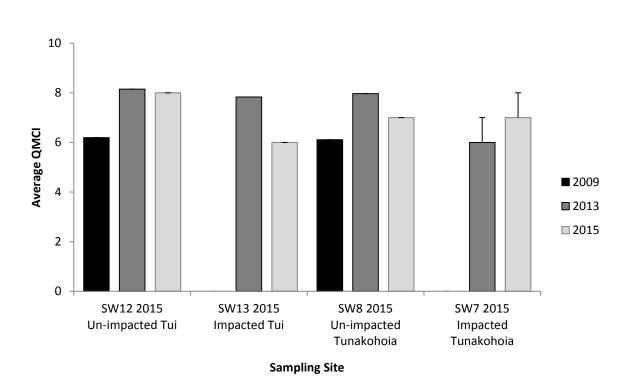
Field Assessment Form: Wadeable Streams

	A02277813 Job N	ame: Tvi Ecolo	94 Assessor:	AG + PL
Location: Tu	nakohoia Date:		Time (NZS	T): 14:05
Site Number:	SW 13 Eastin	ng: 1839888	Northing:	and the second
Channel and	Riparian Features	<u>a 101000</u>	Northing.	<u> 501 2017</u>
Canopy Cove Open Partly Shaded Significantly S	r Dom I Crops Maded Exotic Native	re 🧹	Fencing None of in One side o Complete	r partial
	raulic Conditions			
	vidth (active channel) $\frac{9}{2}$		Stream depth	0.098
	width (active channel)		Stream depth	0.17
Ave. Stream w Max Stream w	/idth (water)	1:94 Ave. 2-55	Surface velocity	
Max Stream w	(ldth (water)	2-55		
Water Quality	a second s			
Temperature (۱۱、 Turbidity	C): Condu G°c	ctivity: 126 S	DO (mg/L): DO (%): ۲۲	8.93
Clear:	Highly Turbid	·		
Slightly Turbid:		·	pH =	6.19
Stream-Botton			ORP	= -13.8
	norganic substrata):			
	tightly packed &/or overla	nning composition		
Moderately pa	cked with some overlap	pping composition		
	assortment with little ove	rlan		
No packing/loc	ose assortment easily move	eq	×	
Embeddedness	(% gravel-boulder particle	es covered by fine co		
<5%	5-25%		26-50%	
51-75%	>75%		20-3078	X
Organic Materi				
Large wood (>1	0cm diameter)			
<5%	× 5-25%		26-50%	
51-75%	>75%		20.5070	
Coarse Detritus	(small wood, sticks, leave:	s etc)		
<5%	☓ 5-25%		26- 50%	
51-75%	>75%			
ine (<1mm) Or	ganic Deposits (edges & ba	ackwaters)		
<5%	5-25%		26-50%	
51-75%	>75%			
labitat Types Sa	ampled (for macroinverteb	orates, % effort: eacl	n column)	
% of effort; sho	uld sum to 100%			
liffle	<u>80</u> Run	20	Total%	100
tones:	Wood		, 0	
dges	Macroph	ytes	Total%	·
Comments				
· DIS @R1 ,	was shaded 10th, p withs on work warp	Tom 22 11/5 7	5-85 1, 50	haded

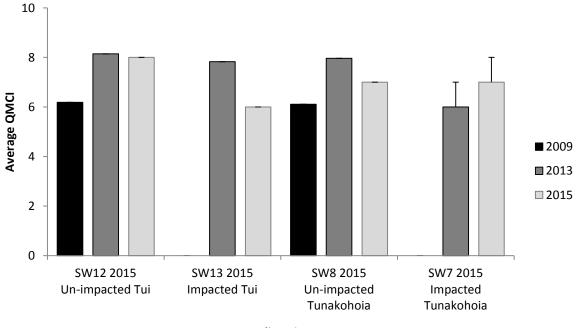
n lin

QUALITATIVE HABITAT FIELD SHEET:

WADEABLE HARD BOTTOMED STREAMS

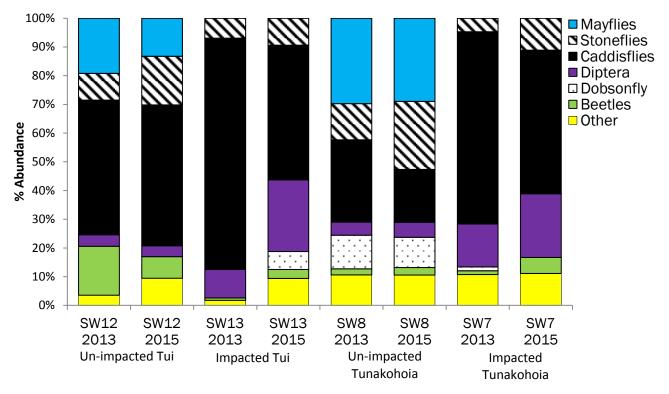

Location:	ິ ຮ	Site Name: Tui	Assessor: PL+PG	Easting:
Site id: SW13				Northing:
Habitat Parameter		C	ategory	
	Optimal	Suboptimal	Marginal	Poor
1. Riparian Vegetative	Bankside vegetation	Bankside vegetation	Pathways present and	Break frequent
Zone Width	buffer $> 10 \text{ m}$	buffer $< 10 \text{ m}$	/or stock access to stream	Human activity obvious
	Continuous and dense	Mostly continuous	Mostly healed over	· Haman activity obvious
Left Bank	20 19 18 17 16	15 14 13 (2)11	10 9 8 7 6	5 4 3 2 1
Right Bank	20 19 18 17 16		10 9 8 7 6	5 4 3 2 1
Mean LB & RB				
2. Vegetative Zone	Bank surfaces and	Bank surfaces covered	 Bank surfaces covered by a 	Bank surfaces covered by
Protection	immediate riparian zones	mainly by native vegetation	mixture of grasses, shrubs,	grasses and shrubs
locotion	covered by native vegetation	Disruption evident	blackberry, willow and	 Disruption of stream ban
	• Trees, understory shrubs	Banks may be covered	introduced trees	vegetation very high
	-	_		
	or non woody plants present	by exotic forest	Vegetation disruption obvious	Grass heavily grazed Grass heavily demogra
	 Vegetation disruption minim) · · · ·	Bare soil/closely cropped	Significant stock damage
			vegetation common	to the bank
eft Bank	<u>20 19 18 17 16</u>	15 14 18 12 11 15 14 18 12 17	10 9 8 7 6	5 4 3 2 1
Right Bank	20 19 18 17 16	15 (14 (18) 12 (11)	10 9 8 7 6	5 4 3 2 1
Mean LB & RB				
Stability	Banks stable	Moderately stable	Moderately unstable	Unstable
	 Erosion/bank failure absent 	 Infrequent, small areas of 	 30 - 60% of bank in reach has 	-
	or minimal	erosion mostly healed over	areas of erosion	• 60 - 100 % of bank has
	< 5 % of bank affected	• 5 - 30 % of bank eroded	High erosion potential during	erosional scars
			floods	
_eft Bank	20 19 18 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Right Bank	20 (19), 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Mean LB & RB				
	 Riffles relatively frequent 	 Occurrence of riffles infrequer 	 Occasional riffle or run 	 Generally flat water shall
1	• Disturbance between riffles	 Distance between riffles 	 Bottom contours provide 	riffles
	divided by width of stream	divided by width of stream	some habitat	 Poor habitat
γ	= 5 - 7	= 7 - 15	 Distance between riffles 	 Distance between riffles
	 Variety of habitat is key 		divided by width of stream	divided by width of stream
L 71	A		= 15 - 25	= > 25
icore	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Subtotal		historic		
. Channel	 Changes to channel/dredging 	 Some changes to channel 	 Channel changes/dredging 	 Banks shored with gabion
Iteration	absent or minimal	dredging	extensive	or cement
	 Stream with normal pattern 	 Evidence of past channel 	 Embankments or shoring 	 80 % of the stream rea
		dredging	structures present on both banks	channelised and disturbed
		 Recent channel dredging 	 40 - 80 % of the reach 	 Instream habitat altered
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	not present	channelised and disturbed	or absent
Score	20 19 18 (17 )16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1






Habitat Parameter		Ca	ategory			
	Optimal	Suboptimal	Marginal	Poor		
6. Sediment Deposition	<ul> <li>Little/no islands or point</li> </ul>	New increase in bar formation	<ul> <li>Some deposition of new gravel</li> </ul>	<ul> <li>Heavy deposits of fine</li> </ul>		
	bars present	mostly from gravel, sand or	sand or fine sediment on old	material		
	< 20 % of the bottom affec	fine sediment	and new bars	Increased bar development		
	by stream deposition	• 20 - 50 % of bottom affected	<ul> <li>50 - 80 % of the bottom</li> </ul>	<ul> <li>&gt; 80 % of the bottom</li> </ul>		
		<ul> <li>Slight deposition in pools</li> </ul>	affected	changing frequently		
	0		<ul> <li>Sediment deposits at obstructi</li> </ul>	<ul> <li>Pools almost absent due to</li> </ul>		
	A R		constructions and bends	sediment deposition		
Score	20 19 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
7. Velocity/Depth	• 4 velocity/depth regimes pre	<ul> <li>3 of 4 velocity/depth regimes</li> </ul>	• 2 of 4 velocity/depth regimes	<ul> <li>Dominated by 1 velocity/</li> </ul>		
Regimes	<ul> <li>Slow/deep, slow/shallow</li> </ul>	<ul> <li>If fast/shallow is missing then</li> </ul>	<ul> <li>If fast/shallow or slow/shallow</li> </ul>	depth regime		
	Fast/shallow, Fast/deep	score lower	is missing then score lower	<ul> <li>Usually slow/deep</li> </ul>		
Score	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
8. Abundance and	<ul> <li>&gt; 50 % substrate favourable</li> </ul>	<ul> <li>30 - 50 % substrate favourab</li> </ul>	<ul> <li>10 - 30 % substrate favourabl</li> </ul>	< 10 % substrate favourabl		
Diversity of Habitat	for invert colonisation, wide va	for invertebrate colonisation	for invertebrate colonisation	for invertebrate colonisation		
А,	of woody debris, riffles, root m	<ul> <li>Snags/submerged logs/under-</li> </ul>	<ul> <li>Fish cover patchy</li> </ul>	<ul> <li>Fish cover rare or absent</li> </ul>		
1 M.	<ul> <li>Snags/submerged logs/under</li> </ul>	cut banks/cobbles	<ul> <li>60 - 90 % substrate easily mo</li> </ul>	<ul> <li>Substrate unstable or</li> </ul>		
ar - 200	cut banks/cobbles provides	• Fish cover common	by foot	lacking		
	abundant fish cover	<ul> <li>Moderate variety of habitat</li> </ul>	<ul> <li>Woody debris rare or may be</li> </ul>	<ul> <li>Stable habitats lacking or</li> </ul>		
۶. ۲	<ul> <li>Must not be new or transien</li> </ul>	types. Can consist of some new	smothered by sediment.	or limited to macrophytes		
		material				
Score	20 19 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
9. Periphyton	<ul> <li>Periphyton not visible on har</li> </ul>	<ul> <li>Periphyton not visible on ston</li> </ul>	<ul> <li>Periphyton visible</li> </ul>	<ul> <li>Periphyton obvious and</li> </ul>		
	held stones	<ul> <li>Stable substrate</li> </ul>	< 20 % cover of available sub	prolific		
	<ul> <li>Stable substrate</li> </ul>	<ul> <li>Periphyton obvious to touch</li> </ul>		<ul> <li>&gt; 20 % cover of available</li> </ul>		
	<ul> <li>Surfaces rough to touch</li> </ul>			substrate		
Score	20 19 18 17 16	15 14 13 12 11	10 (9) 8 7 6	5 4 3 2 1		
TOTAL SCORE	Note: Only use means of LB ar	d RB values				

Appendix C Figures




**Figure 1**. Average Macroinvertebrate Community Index (MCI) scores at un-impacted and impacted sites on Tui Stream and Tunakohoia Stream from 2009, 2013 and 2015. Error bars are S.E. ± (where n = 4).



**Sampling Site** 

**Figure 2**. Average Quantitative Community Index (QMCI) scores at un-impacted and impacted sites on Tui Stream and Tunakohoia Stream from 2009, 2013 and 2015. Error bars are S.E. ± (where n = 4)



**Sampling Site** 

**Figure 3**. Macroinvertebrate community composition represented by percent abundance of dominant taxa at un-impacted and impacted sites on Tui Stream and Tunakohoia Stream. Taxa grouped as 'Other', include Crustacea, Mites, Oligochaetes and Snails.